IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v419y2022ics0096300321009334.html
   My bibliography  Save this article

Mutual visibility in graphs

Author

Listed:
  • Di Stefano, Gabriele

Abstract

Let G=(V,E) be a graph and P⊆V a set of points. Two points are mutually visible if there is a shortest path between them without further points. P is a mutual-visibility set if its points are pairwise mutually visible. The mutual-visibility number of G is the size of any largest mutual-visibility set. In this paper we start the study about this new invariant and the mutual-visibility sets in undirected graphs. We introduce the Mutual-Visibility problem which asks to find a mutual-visibility set with a size larger than a given number. We show that this problem is NP-complete, whereas, to check whether a given set of points is a mutual-visibility set is solvable in polynomial time. Then we study mutual-visibility sets and mutual-visibility numbers on special classes of graphs, such as block graphs, trees, grids, tori, complete bipartite graphs, cographs. We also provide some relations of the mutual-visibility number of a graph with other invariants.

Suggested Citation

  • Di Stefano, Gabriele, 2022. "Mutual visibility in graphs," Applied Mathematics and Computation, Elsevier, vol. 419(C).
  • Handle: RePEc:eee:apmaco:v:419:y:2022:i:c:s0096300321009334
    DOI: 10.1016/j.amc.2021.126850
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300321009334
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.126850?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anand, Bijo S. & Chandran S. V., Ullas & Changat, Manoj & Klavžar, Sandi & Thomas, Elias John, 2019. "Characterization of general position sets and its applications to cographs and bipartite graphs," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 84-89.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manuel, Paul & Brešar, Boštjan & Klavžar, Sandi, 2023. "Geodesic packing in graphs," Applied Mathematics and Computation, Elsevier, vol. 459(C).
    2. Brešar, Boštjan & Yero, Ismael G., 2024. "Lower (total) mutual-visibility number in graphs," Applied Mathematics and Computation, Elsevier, vol. 465(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cicerone, Serafino & Di Stefano, Gabriele & Klavžar, Sandi, 2023. "On the mutual visibility in Cartesian products and triangle-free graphs," Applied Mathematics and Computation, Elsevier, vol. 438(C).
    2. Tian, Jing & Xu, Kexiang, 2021. "The general position number of Cartesian products involving a factor with small diameter," Applied Mathematics and Computation, Elsevier, vol. 403(C).
    3. Klavžar, Sandi & Rus, Gregor, 2021. "The general position number of integer lattices," Applied Mathematics and Computation, Elsevier, vol. 390(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:419:y:2022:i:c:s0096300321009334. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.