IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v479y2024ics0096300324003242.html
   My bibliography  Save this article

Evaluation and threshold-based mutual supervision promotes the evolution of cooperation on interdependent networks

Author

Listed:
  • Ma, Jinlong
  • Zhao, Hongfei

Abstract

Inspired by the pivotal role of supervision mechanisms in promoting and maintaining cooperative behavior in human society, we propose a mutual supervision mechanism to explore the evolution of cooperation on an interdependent network. The mechanism adjusts the game type of supervised nodes when their evaluation value falls below a critical threshold. Monte Carlo simulations reveal that the mutual supervision mechanism effectively encourages the emergence of cooperative strategies on interdependent networks. The experimental results show a direct positive linkage between the number of supervised nodes and the fraction of cooperation. In detail, the effect of the sucker's payoff on cooperation is more noticeable when most of the nodes are supervised by the mechanism. However, a higher sucker's payoff discourages cooperation when there are few supervised nodes. Furthermore, the stability of cooperation is closely related to a stricter supervision threshold. Conversely, if the supervision threshold is too lenient, previously stable cooperation levels will suddenly collapse.

Suggested Citation

  • Ma, Jinlong & Zhao, Hongfei, 2024. "Evaluation and threshold-based mutual supervision promotes the evolution of cooperation on interdependent networks," Applied Mathematics and Computation, Elsevier, vol. 479(C).
  • Handle: RePEc:eee:apmaco:v:479:y:2024:i:c:s0096300324003242
    DOI: 10.1016/j.amc.2024.128863
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300324003242
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2024.128863?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Yu’e & Zhang, Zhipeng & Wang, Xinyu & Yan, Ming & Zhang, Qingfeng & Zhang, Shuhua, 2021. "Evolution of cooperation in the multigame on a two-layer square network," Applied Mathematics and Computation, Elsevier, vol. 400(C).
    2. Cassar, Alessandra, 2007. "Coordination and cooperation in local, random and small world networks: Experimental evidence," Games and Economic Behavior, Elsevier, vol. 58(2), pages 209-230, February.
    3. Sergey V. Buldyrev & Roni Parshani & Gerald Paul & H. Eugene Stanley & Shlomo Havlin, 2010. "Catastrophic cascade of failures in interdependent networks," Nature, Nature, vol. 464(7291), pages 1025-1028, April.
    4. Bin, Liu & Yue, Wu, 2023. "Co-evolution of reputation-based preference selection and resource allocation with multigame on interdependent networks," Applied Mathematics and Computation, Elsevier, vol. 456(C).
    5. K. M. Ariful Kabir & Jun Tanimoto & Zhen Wang, 2018. "Influence of bolstering network reciprocity in the evolutionary spatial Prisoner’s Dilemma game: a perspective," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 91(12), pages 1-10, December.
    6. Huang, Keke & Chen, Xiaofang & Yu, Zhaofei & Yang, Chunhua & Gui, Weihua, 2018. "Heterogeneous cooperative belief for social dilemma in multi-agent system," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 572-579.
    7. Fernando P. Santos & Francisco C. Santos & Jorge M. Pacheco, 2018. "Social norm complexity and past reputations in the evolution of cooperation," Nature, Nature, vol. 555(7695), pages 242-245, March.
    8. A. Szolnoki & M. Perc, 2009. "Promoting cooperation in social dilemmas via simple coevolutionary rules," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 67(3), pages 337-344, February.
    9. Christian Hilbe & Torsten Röhl & Manfred Milinski, 2014. "Extortion subdues human players but is finally punished in the prisoner’s dilemma," Nature Communications, Nature, vol. 5(1), pages 1-6, September.
    10. Yang, Zhihu & Li, Zhi & Wang, Long, 2020. "Evolution of cooperation in a conformity-driven evolving dynamic social network," Applied Mathematics and Computation, Elsevier, vol. 379(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Yu’e & Zhang, Zhipeng & Wang, Xinyu & Yan, Ming & Zhang, Qingfeng & Zhang, Shuhua, 2021. "Evolution of cooperation in the multigame on a two-layer square network," Applied Mathematics and Computation, Elsevier, vol. 400(C).
    2. Zhang, Liming & Li, Haihong & Dai, Qionglin & Yang, Junzhong, 2022. "Migration based on environment comparison promotes cooperation in evolutionary games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 595(C).
    3. Wu, Yu’e & Zhang, Zhipeng & Yang, Guoli & Liu, Haixin & Zhang, Qingfeng, 2022. "Evolution of cooperation driven by diversity on a double-layer square lattice," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    4. Yunsheng Deng & Jihui Zhang, 2022. "The choice-decision based on memory and payoff favors cooperation in stag hunt game on interdependent networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(2), pages 1-13, February.
    5. Zhang, Yanling & Yang, Shuo & Chen, Xiaojie & Bai, Yanbing & Xie, Guangming, 2023. "Reputation update of responders efficiently promotes the evolution of fairness in the ultimatum game," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    6. Zhang, Mengshu & Ren, Tianyu & Zeng, Xiao-Jun & Li, Jia, 2024. "Promoting cooperation through dynamic trustworthiness in spatial public goods games," Applied Mathematics and Computation, Elsevier, vol. 479(C).
    7. Zhang, Zhipeng & Wu, Yu’e & Zhang, Shuhua, 2022. "Reputation-based asymmetric comparison of fitness promotes cooperation on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    8. Tian, Yue & Gao, Shun & Li, Haihong & Dai, Qionglin & Yang, Junzhong, 2024. "Particle swarm intelligence promotes cooperation by adapting interaction radii in co-evolutionary games," Applied Mathematics and Computation, Elsevier, vol. 474(C).
    9. Pi, Bin & Li, Yuhan & Feng, Minyu, 2022. "An evolutionary game with conformists and profiteers regarding the memory mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    10. Pan, Qiuhui & Wang, Linpeng & He, Mingfeng, 2020. "Social dilemma based on reputation and successive behavior," Applied Mathematics and Computation, Elsevier, vol. 384(C).
    11. Zhang, Qianwei & Tang, Rui & Lu, Yilun & Wang, Xinyu, 2024. "The impact of anxiety on cooperative behavior: A network evolutionary game theory approach," Applied Mathematics and Computation, Elsevier, vol. 474(C).
    12. Gao, Hongyu & Wang, Juan & Zhang, Fan & Li, Xiaopeng & Xia, Chengyi, 2021. "Cooperation dynamics based on reputation in the mixed population with two species of strategists," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    13. Mao, Yajun & Rong, Zhihai & Wu, Zhi-Xi, 2021. "Effect of collective influence on the evolution of cooperation in evolutionary prisoner’s dilemma games," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    14. Chu, Chen & Zhai, Yao & Mu, Chunjiang & Hu, Die & Li, Tong & Shi, Lei, 2019. "Reputation-based popularity promotes cooperation in the spatial prisoner's dilemma game," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    15. Han, Xu & Zhao, Xiaowei & Xia, Haoxiang, 2022. "Hybrid learning promotes cooperation in the spatial prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    16. Han, Xu & Xia, Haoxiang & Zhao, Xiaowei, 2024. "Memory–based adaptive interaction willingness enhances cooperation in spatial prisoner's dilemma," Applied Mathematics and Computation, Elsevier, vol. 476(C).
    17. Deng, Yunsheng & Zhang, Jihui, 2021. "Memory-based prisoner's dilemma game with history optimal strategy learning promotes cooperation on interdependent networks," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    18. Yang, Zhihu & Li, Zhi & Wang, Long, 2020. "Evolution of cooperation in a conformity-driven evolving dynamic social network," Applied Mathematics and Computation, Elsevier, vol. 379(C).
    19. Feng, Kehuan & Han, Songlin & Feng, Minyu & Szolnoki, Attila, 2024. "An evolutionary game with reputation-based imitation-mutation dynamics," Applied Mathematics and Computation, Elsevier, vol. 472(C).
    20. Bin, Liu & Yue, Wu, 2023. "Co-evolution of reputation-based preference selection and resource allocation with multigame on interdependent networks," Applied Mathematics and Computation, Elsevier, vol. 456(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:479:y:2024:i:c:s0096300324003242. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.