Computational efficiency study of a micro-macro Markov chain Monte Carlo method for molecular dynamics
Author
Abstract
Suggested Citation
DOI: 10.1016/j.amc.2024.128683
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Gareth O. Roberts & Jeffrey S. Rosenthal, 1998. "Optimal scaling of discrete approximations to Langevin diffusions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(1), pages 255-268.
- Xifara, T. & Sherlock, C. & Livingstone, S. & Byrne, S. & Girolami, M., 2014. "Langevin diffusions and the Metropolis-adjusted Langevin algorithm," Statistics & Probability Letters, Elsevier, vol. 91(C), pages 14-19.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Arnak S. Dalalyan, 2017.
"Theoretical guarantees for approximate sampling from smooth and log-concave densities,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 651-676, June.
- Arnak S. Dalalyan, 2014. "Theoretical guarantees for approximate sampling from smooth and log-concave densities," Working Papers 2014-45, Center for Research in Economics and Statistics.
- Bédard, Mylène, 2017. "Hierarchical models: Local proposal variances for RWM-within-Gibbs and MALA-within-Gibbs," Computational Statistics & Data Analysis, Elsevier, vol. 109(C), pages 231-246.
- Delis, Manthos D. & Tsionas, Mike G., 2018. "Measuring management practices," International Journal of Production Economics, Elsevier, vol. 199(C), pages 65-77.
- Dalalyan, Arnak S. & Karagulyan, Avetik, 2019.
"User-friendly guarantees for the Langevin Monte Carlo with inaccurate gradient,"
Stochastic Processes and their Applications, Elsevier, vol. 129(12), pages 5278-5311.
- Arnak Dalalyan & Avetik Karagulyan, 2017. "User-friendly guarantees for the Langevin Monte Carlo with inaccurate gradient," Working Papers 2017-20, Center for Research in Economics and Statistics.
- Aknouche, Abdelhakim & Dimitrakopoulos, Stefanos, 2020. "On an integer-valued stochastic intensity model for time series of counts," MPRA Paper 105406, University Library of Munich, Germany.
- Tsionas, Mike G. & Michaelides, Panayotis G., 2017.
"Neglected chaos in international stock markets: Bayesian analysis of the joint return–volatility dynamical system,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 95-107.
- Tsionas, Mike G. & Michaelides, Panayotis G., 2017. "Neglected chaos in international stock markets: Bayesian analysis of the joint return–volatility dynamical system," LSE Research Online Documents on Economics 80749, London School of Economics and Political Science, LSE Library.
- Shao, Wei & Guo, Guangbao & Meng, Fanyu & Jia, Shuqin, 2013. "An efficient proposal distribution for Metropolis–Hastings using a B-splines technique," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 465-478.
- Anandamayee Majumdar & Corinna Gries & Jason Walker, 2011. "A non-stationary spatial generalized linear mixed model approach for studying plant diversity," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(9), pages 1935-1950, October.
- Reihaneh Entezari & Patrick E. Brown & Jeffrey S. Rosenthal, 2020. "Bayesian spatial analysis of hardwood tree counts in forests via MCMC," Environmetrics, John Wiley & Sons, Ltd., vol. 31(4), June.
- Peter Neal & Gareth Roberts, 2008. "Optimal Scaling for Random Walk Metropolis on Spherically Constrained Target Densities," Methodology and Computing in Applied Probability, Springer, vol. 10(2), pages 277-297, June.
- Burda Martin & Maheu John M., 2013.
"Bayesian adaptively updated Hamiltonian Monte Carlo with an application to high-dimensional BEKK GARCH models,"
Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(4), pages 345-372, September.
- Martin Burda & John M. Maheu, 2012. "Bayesian Adaptively Updated Hamiltonian Monte Carlo with an Application to High-Dimensional BEKK GARCH Models," Working Paper series 46_12, Rimini Centre for Economic Analysis.
- Rishikesh Yadav & Raphaël Huser & Thomas Opitz, 2021. "Spatial hierarchical modeling of threshold exceedances using rate mixtures," Environmetrics, John Wiley & Sons, Ltd., vol. 32(3), May.
- Xiang, Fei & Neal, Peter, 2014. "Efficient MCMC for temporal epidemics via parameter reduction," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 240-250.
- Dang, Khue-Dung & Quiroz, Matias & Kohn, Robert & Tran, Minh-Ngoc & Villani, Mattias, 2019. "Hamiltonian Monte Carlo with Energy Conserving Subsampling," Working Paper Series 372, Sveriges Riksbank (Central Bank of Sweden).
- Samuel Livingstone & Giacomo Zanella, 2022. "The Barker proposal: Combining robustness and efficiency in gradient‐based MCMC," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 496-523, April.
- Mattingly, J. C. & Stuart, A. M. & Higham, D. J., 2002. "Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise," Stochastic Processes and their Applications, Elsevier, vol. 101(2), pages 185-232, October.
- Tore Selland Kleppe, 2016. "Adaptive Step Size Selection for Hessian-Based Manifold Langevin Samplers," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(3), pages 788-805, September.
- Beskos, A. & Pinski, F.J. & Sanz-Serna, J.M. & Stuart, A.M., 2011. "Hybrid Monte Carlo on Hilbert spaces," Stochastic Processes and their Applications, Elsevier, vol. 121(10), pages 2201-2230, October.
- Kamatani, Kengo, 2020. "Random walk Metropolis algorithm in high dimension with non-Gaussian target distributions," Stochastic Processes and their Applications, Elsevier, vol. 130(1), pages 297-327.
- Quan Zhou & Jun Yang & Dootika Vats & Gareth O. Roberts & Jeffrey S. Rosenthal, 2022. "Dimension‐free mixing for high‐dimensional Bayesian variable selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 1751-1784, November.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:474:y:2024:i:c:s0096300324001553. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.