IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v474y2024ics0096300324001553.html
   My bibliography  Save this article

Computational efficiency study of a micro-macro Markov chain Monte Carlo method for molecular dynamics

Author

Listed:
  • Vandecasteele, Hannes
  • Samaey, Giovanni

Abstract

We study the numerical properties of a recently introduced micro-macro Markov chain Monte Carlo (mM-MCMC) scheme that accelerates sampling of Gibbs distributions when there is a time-scale separation between the complete (microscopic) molecular dynamics and the slow dynamics of a low dimensional reaction coordinate. The micro-macro Markov chain works in three steps: 1) compute the reaction coordinate value associated to the current molecular state; 2) generate a new macroscopic proposal using a proposal distribution; 3) reconstruct a molecular configuration that is consistent with the newly sampled macroscopic value. Here, we systematically study the impact of method parameters on the efficiency of the micro-macro Markov chain Monte Carlo method, namely the chosen macroscopic dynamics and the microscopic reconstruction distribution. We specifically investigate the impact of the macroscopic and reconstruction proposal distributions and their parameters on this efficiency on two prototypical molecular systems, a three-atom molecule and butane. We find, through detailed computational experiments, that the efficiency is largest when these proposal distributions are close to their time-invariant counterparts and that it is robust with respect to parameter changes.

Suggested Citation

  • Vandecasteele, Hannes & Samaey, Giovanni, 2024. "Computational efficiency study of a micro-macro Markov chain Monte Carlo method for molecular dynamics," Applied Mathematics and Computation, Elsevier, vol. 474(C).
  • Handle: RePEc:eee:apmaco:v:474:y:2024:i:c:s0096300324001553
    DOI: 10.1016/j.amc.2024.128683
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300324001553
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2024.128683?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gareth O. Roberts & Jeffrey S. Rosenthal, 1998. "Optimal scaling of discrete approximations to Langevin diffusions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(1), pages 255-268.
    2. Xifara, T. & Sherlock, C. & Livingstone, S. & Byrne, S. & Girolami, M., 2014. "Langevin diffusions and the Metropolis-adjusted Langevin algorithm," Statistics & Probability Letters, Elsevier, vol. 91(C), pages 14-19.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arnak S. Dalalyan, 2017. "Theoretical guarantees for approximate sampling from smooth and log-concave densities," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 651-676, June.
    2. Bédard, Mylène, 2017. "Hierarchical models: Local proposal variances for RWM-within-Gibbs and MALA-within-Gibbs," Computational Statistics & Data Analysis, Elsevier, vol. 109(C), pages 231-246.
    3. Delis, Manthos D. & Tsionas, Mike G., 2018. "Measuring management practices," International Journal of Production Economics, Elsevier, vol. 199(C), pages 65-77.
    4. Dalalyan, Arnak S. & Karagulyan, Avetik, 2019. "User-friendly guarantees for the Langevin Monte Carlo with inaccurate gradient," Stochastic Processes and their Applications, Elsevier, vol. 129(12), pages 5278-5311.
    5. Aknouche, Abdelhakim & Dimitrakopoulos, Stefanos, 2020. "On an integer-valued stochastic intensity model for time series of counts," MPRA Paper 105406, University Library of Munich, Germany.
    6. Tsionas, Mike G. & Michaelides, Panayotis G., 2017. "Neglected chaos in international stock markets: Bayesian analysis of the joint return–volatility dynamical system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 95-107.
    7. Shao, Wei & Guo, Guangbao & Meng, Fanyu & Jia, Shuqin, 2013. "An efficient proposal distribution for Metropolis–Hastings using a B-splines technique," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 465-478.
    8. Anandamayee Majumdar & Corinna Gries & Jason Walker, 2011. "A non-stationary spatial generalized linear mixed model approach for studying plant diversity," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(9), pages 1935-1950, October.
    9. Reihaneh Entezari & Patrick E. Brown & Jeffrey S. Rosenthal, 2020. "Bayesian spatial analysis of hardwood tree counts in forests via MCMC," Environmetrics, John Wiley & Sons, Ltd., vol. 31(4), June.
    10. Peter Neal & Gareth Roberts, 2008. "Optimal Scaling for Random Walk Metropolis on Spherically Constrained Target Densities," Methodology and Computing in Applied Probability, Springer, vol. 10(2), pages 277-297, June.
    11. Burda Martin & Maheu John M., 2013. "Bayesian adaptively updated Hamiltonian Monte Carlo with an application to high-dimensional BEKK GARCH models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(4), pages 345-372, September.
    12. Rishikesh Yadav & Raphaël Huser & Thomas Opitz, 2021. "Spatial hierarchical modeling of threshold exceedances using rate mixtures," Environmetrics, John Wiley & Sons, Ltd., vol. 32(3), May.
    13. Xiang, Fei & Neal, Peter, 2014. "Efficient MCMC for temporal epidemics via parameter reduction," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 240-250.
    14. Dang, Khue-Dung & Quiroz, Matias & Kohn, Robert & Tran, Minh-Ngoc & Villani, Mattias, 2019. "Hamiltonian Monte Carlo with Energy Conserving Subsampling," Working Paper Series 372, Sveriges Riksbank (Central Bank of Sweden).
    15. Samuel Livingstone & Giacomo Zanella, 2022. "The Barker proposal: Combining robustness and efficiency in gradient‐based MCMC," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 496-523, April.
    16. Mattingly, J. C. & Stuart, A. M. & Higham, D. J., 2002. "Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise," Stochastic Processes and their Applications, Elsevier, vol. 101(2), pages 185-232, October.
    17. Tore Selland Kleppe, 2016. "Adaptive Step Size Selection for Hessian-Based Manifold Langevin Samplers," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(3), pages 788-805, September.
    18. Beskos, A. & Pinski, F.J. & Sanz-Serna, J.M. & Stuart, A.M., 2011. "Hybrid Monte Carlo on Hilbert spaces," Stochastic Processes and their Applications, Elsevier, vol. 121(10), pages 2201-2230, October.
    19. Kamatani, Kengo, 2020. "Random walk Metropolis algorithm in high dimension with non-Gaussian target distributions," Stochastic Processes and their Applications, Elsevier, vol. 130(1), pages 297-327.
    20. Quan Zhou & Jun Yang & Dootika Vats & Gareth O. Roberts & Jeffrey S. Rosenthal, 2022. "Dimension‐free mixing for high‐dimensional Bayesian variable selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 1751-1784, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:474:y:2024:i:c:s0096300324001553. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.