IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v473y2024ics0096300324001413.html
   My bibliography  Save this article

Randomized progressive iterative approximation for B-spline curve and surface fittings

Author

Listed:
  • Wu, Nian-Ci
  • Liu, Cheng-Zhi

Abstract

For large-scale data fitting, the least-squares progressive iterative approximation is a widely used method in many applied domains because of its intuitive geometric meaning and efficiency. In this work, we present a randomized progressive iterative approximation (RPIA) for the B-spline curve and surface fittings. In each iteration, RPIA locally adjusts the control points according to a random criterion of index selections. The difference for each control point is computed concerning the randomized block coordinate descent method. From geometric and algebraic aspects, the illustrations of RPIA are provided. We prove that RPIA constructs a series of fitting curves (resp., surfaces), whose limit curve (resp., surface) can converge in expectation to the least-squares fitting result of the given data points. Numerical experiments are given to confirm our results and show the benefits of RPIA.

Suggested Citation

  • Wu, Nian-Ci & Liu, Cheng-Zhi, 2024. "Randomized progressive iterative approximation for B-spline curve and surface fittings," Applied Mathematics and Computation, Elsevier, vol. 473(C).
  • Handle: RePEc:eee:apmaco:v:473:y:2024:i:c:s0096300324001413
    DOI: 10.1016/j.amc.2024.128669
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300324001413
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2024.128669?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. Leventhal & A. S. Lewis, 2010. "Randomized Methods for Linear Constraints: Convergence Rates and Conditioning," Mathematics of Operations Research, INFORMS, vol. 35(3), pages 641-654, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Jia-Qi & Huang, Zheng-Da, 2020. "On the error estimate of the randomized double block Kaczmarz method," Applied Mathematics and Computation, Elsevier, vol. 370(C).
    2. Qin Wang & Weiguo Li & Wendi Bao & Feiyu Zhang, 2022. "Accelerated Randomized Coordinate Descent for Solving Linear Systems," Mathematics, MDPI, vol. 10(22), pages 1-20, November.
    3. Mengdi Wang & Dimitri P. Bertsekas, 2014. "Stabilization of Stochastic Iterative Methods for Singular and Nearly Singular Linear Systems," Mathematics of Operations Research, INFORMS, vol. 39(1), pages 1-30, February.
    4. Honggang Zhang & Zhiyuan Liu & Yicheng Zhang & Weijie Chen & Chenyang Zhang, 2024. "A Distributed Computing Method Integrating Improved Gradient Projection for Solving Stochastic Traffic Equilibrium Problem," Networks and Spatial Economics, Springer, vol. 24(2), pages 361-381, June.
    5. Ruoyu Sun & Zhi-Quan Luo & Yinyu Ye, 2020. "On the Efficiency of Random Permutation for ADMM and Coordinate Descent," Mathematics of Operations Research, INFORMS, vol. 45(1), pages 233-271, February.
    6. Nicolas Loizou & Peter Richtárik, 2020. "Momentum and stochastic momentum for stochastic gradient, Newton, proximal point and subspace descent methods," Computational Optimization and Applications, Springer, vol. 77(3), pages 653-710, December.
    7. Du, Kui, 2024. "Regularized randomized iterative algorithms for factorized linear systems," Applied Mathematics and Computation, Elsevier, vol. 466(C).
    8. Wu, Nian-Ci & Cui, Ling-Xia & Zuo, Qian, 2022. "On the relaxed greedy deterministic row and column iterative methods," Applied Mathematics and Computation, Elsevier, vol. 432(C).
    9. Zhang, Yanjun & Li, Hanyu, 2023. "Splitting-based randomized iterative methods for solving indefinite least squares problem," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    10. Du, Kui & Sun, Xiao-Hui, 2021. "A doubly stochastic block Gauss–Seidel algorithm for solving linear equations," Applied Mathematics and Computation, Elsevier, vol. 408(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:473:y:2024:i:c:s0096300324001413. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.