IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v466y2024ics0096300323006136.html
   My bibliography  Save this article

Improving Kalman filter for cyber physical systems subject to replay attacks: An attack-detection-based compensation strategy

Author

Listed:
  • Li, Xin
  • Lei, Anzhi
  • Zhu, Liangkuan
  • Ban, Mingfei

Abstract

This paper investigates the problem of improving Kalman filtering for a class of multi-layer cyber physical systems (CPS) in the face of multiple consecutive replay attacks. CPS is vulnerable in an open network environment, and the replay attack model is described based on the number and duration of successful message transmissions. For all possible occurrences of replay attacks, a detection and compensation method is obtained with the help of the residual monitoring mechanism and an attack detection function. At the same time, in order to identify the attack has occurred in which, the register is integrated into the system. Furthermore, a novel Kalman filter with a compensation mechanism is designed to estimate the ideal states of CPS subject to replay attacks, and the Kalman filter gain is optimized based on the detection results. Finally, a simulation example is given to verify the effectiveness of the proposed improving Kalman filter.

Suggested Citation

  • Li, Xin & Lei, Anzhi & Zhu, Liangkuan & Ban, Mingfei, 2024. "Improving Kalman filter for cyber physical systems subject to replay attacks: An attack-detection-based compensation strategy," Applied Mathematics and Computation, Elsevier, vol. 466(C).
  • Handle: RePEc:eee:apmaco:v:466:y:2024:i:c:s0096300323006136
    DOI: 10.1016/j.amc.2023.128444
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300323006136
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2023.128444?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lv, Yuan-Wei & Yang, Guang-Hong, 2022. "An adaptive cubature Kalman filter for nonlinear systems against randomly occurring injection attacks," Applied Mathematics and Computation, Elsevier, vol. 418(C).
    2. Zhao, Younan & Gu, Peng & Zhu, Fanglai & Liu, Tianyi & Shen, Runjie, 2023. "Security control scheme for cyber-physical system with a complex network in physical layer against false data injection attacks," Applied Mathematics and Computation, Elsevier, vol. 447(C).
    3. Liu, Xuan & Zhai, Ding & He, Da-Kuo & Chang, Xiao-Heng, 2018. "Simultaneous fault detection and control for continuous-time Markovian jump systems with partially unknown transition probabilities," Applied Mathematics and Computation, Elsevier, vol. 337(C), pages 469-486.
    4. Tu, Haicheng & Xia, Yongxiang & Wu, Jiajing & Zhou, Xiang, 2019. "Robustness assessment of cyber–physical systems with weak interdependency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 9-17.
    5. Dong, Lewei & Xu, Huiling & Zhang, Liming & Li, Zhengcai & Chen, Yuqing, 2023. "Adjustable proportional-integral multivariable observer-based FDI attack dynamic reconstitution and secure control for cyber-physical systems," Applied Mathematics and Computation, Elsevier, vol. 443(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, He & Xu, Jiawei & Wang, Jing & Chen, Xiangyong, 2024. "Reinforcement learning-based secure synchronization for two-time-scale complex dynamical networks with malicious attacks," Applied Mathematics and Computation, Elsevier, vol. 479(C).
    2. Zhang, Xi & Liu, Dong & Tu, Haicheng & Tse, Chi Kong, 2022. "An integrated modeling framework for cascading failure study and robustness assessment of cyber-coupled power grids," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    3. Gao, Xingle & Peng, Minfang & Tse, Chi K., 2022. "Robustness analysis of cyber-coupled power systems with considerations of interdependence of structures, operations and dynamic behaviors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    4. Xian Xi & Xiangyun Gao & Xiaotian Sun & Huiling Zheng & Congcong Wu, 2024. "Dynamic analysis and application of network structure control in risk conduction in the industrial chain," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-13, December.
    5. Gao, Yanli & Chen, Shiming & Zhou, Jie & Zhang, Jingjing & Stanley, H.E., 2020. "Multiple phase transition in the non-symmetrical interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    6. Yao, Xiuming & Lian, Yue & Park, Ju H., 2019. "Disturbance-observer-based event-triggered control for semi-Markovian jump nonlinear systems," Applied Mathematics and Computation, Elsevier, vol. 363(C), pages 1-1.
    7. Gao, Xingle & Peng, Minfang & Zhang, Ji & Shao, Hua & Liu, Yanchen, 2024. "A cascading failure model of cyber-coupled power system considering virus propagation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 636(C).
    8. Gao, Ming & Niu, Yichun & Sheng, Li & Zhou, Donghua, 2022. "Quantitative analysis of incipient fault detectability for time-varying stochastic systems based on weighted moving average approach," Applied Mathematics and Computation, Elsevier, vol. 434(C).
    9. Xu, Sheng & Xia, Yongxiang & Ouyang, Min, 2020. "Effect of resource allocation to the recovery of scale-free networks during cascading failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    10. Wu, Jiajing & Fang, Biaoyan & Fang, Junyuan & Chen, Xi & Tse, Chi K., 2019. "Sequential topology recovery of complex power systems based on reinforcement learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    11. Quan, Hongzheng & Lu, Xiujuan & Cai, Chenxiao & Zou, Yun & Lam, James, 2024. "A Gramian matrix approach to synthesizing finite-frequency H2 controller," Applied Mathematics and Computation, Elsevier, vol. 481(C).
    12. Gao, Rui & Yang, Guang-Hong, 2022. "Sampled-data distributed state estimation with multiple transmission channels under denial-of-service attacks," Applied Mathematics and Computation, Elsevier, vol. 429(C).
    13. Wang, Chen & Qi, Yiwen & Tang, Yiwen & Li, Xin & Ji, Ming, 2024. "Robust control with protected feedback information for switched systems under injection attacks," Applied Mathematics and Computation, Elsevier, vol. 475(C).
    14. Chen, Tianrui & Fan, Zezhou & Wang, Wenhua & Li, Wenxue, 2024. "Practical stabilization of multi-links highly nonlinear Takagi-Sugeno fuzzy complex networks with Lévy noise based on aperiodically intermittent discrete-time observation control," Applied Mathematics and Computation, Elsevier, vol. 476(C).
    15. Liu, Mengmeng & Yu, Jinyong & Liu, Yu, 2022. "Dynamic event-triggered asynchronous fault detection for Markov jump systems with partially accessible hidden information and subject to aperiodic DoS attacks," Applied Mathematics and Computation, Elsevier, vol. 431(C).
    16. Dong, Lewei & Xu, Huiling & Zhang, Liming & Li, Zhengcai & Chen, Yuqing, 2023. "Adjustable proportional-integral multivariable observer-based FDI attack dynamic reconstitution and secure control for cyber-physical systems," Applied Mathematics and Computation, Elsevier, vol. 443(C).
    17. Xu, Qiyi & Zhang, Yijun & Qi, Wenhai & Xiao, Shunyuan, 2020. "Event-triggered mixed H∞ and passive filtering for discrete-time networked singular Markovian jump systems," Applied Mathematics and Computation, Elsevier, vol. 368(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:466:y:2024:i:c:s0096300323006136. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.