IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v339y2018icp588-606.html
   My bibliography  Save this article

New energy-preserving algorithms for nonlinear Hamiltonian wave equation equipped with Neumann boundary conditions

Author

Listed:
  • Liu, Changying
  • Wu, Xinyuan
  • Shi, Wei

Abstract

In this paper, using the blend of spatial discretization by second-order or fourth-order finite difference methods (FDM) and time integration by the generalized Average Vector Field (GAVF) method or the generalized adapted Average Vector Field (GAAVF) method, we propose and analyze novel energy-preserving algorithms for solving the nonlinear Hamiltonian wave equation equipped with homogeneous Neumann boundary conditions. Firstly, two kinds of finite difference methods are considered to discretize the spatial derivative, which can be of order two and order four respectively in all the spatial grid points. The conservation laws of the discrete energy are established after the semi-discretization, a Hamiltonian system of ODEs is derived whose Hamiltonian can be regarded as the approximate energy of the original continuous system. Then, the GAVF formula and the GAAVF formula are developed and applied to the derived Hamiltonian ODEs to yield some novel and efficient algorithms, which can exactly preserve the discrete energy. The numerical simulation is implemented and the numerical results demonstrate the spatial and temporal accuracy and the remarkable energy-preserving property of the new algorithms presented in this paper.

Suggested Citation

  • Liu, Changying & Wu, Xinyuan & Shi, Wei, 2018. "New energy-preserving algorithms for nonlinear Hamiltonian wave equation equipped with Neumann boundary conditions," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 588-606.
  • Handle: RePEc:eee:apmaco:v:339:y:2018:i:c:p:588-606
    DOI: 10.1016/j.amc.2018.07.059
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300318306258
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.07.059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brugnano, L. & Frasca Caccia, G. & Iavernaro, F., 2015. "Energy conservation issues in the numerical solution of the semilinear wave equation," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 842-870.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Trofimov, Vyacheslav A. & Stepanenko, Svetlana & Razgulin, Alexander, 2021. "Conservation laws of femtosecond pulse propagation described by generalized nonlinear Schrödinger equation with cubic nonlinearity," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 366-396.
    2. Frasca-Caccia, Gianluca & Hydon, Peter E., 2021. "Numerical preservation of multiple local conservation laws," Applied Mathematics and Computation, Elsevier, vol. 403(C).
    3. Almushaira, Mustafa, 2023. "Efficient energy-preserving eighth-order compact finite difference schemes for the sine-Gordon equation," Applied Mathematics and Computation, Elsevier, vol. 451(C).
    4. Yang, Yanhong & Wang, Yushun & Song, Yongzhong, 2018. "A new local energy-preserving algorithm for the BBM equation," Applied Mathematics and Computation, Elsevier, vol. 324(C), pages 119-130.
    5. Barletti, L. & Brugnano, L. & Frasca Caccia, G. & Iavernaro, F., 2018. "Energy-conserving methods for the nonlinear Schrödinger equation," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 3-18.
    6. Xie, Jianqiang & Zhang, Zhiyue, 2019. "An analysis of implicit conservative difference solver for fractional Klein–Gordon–Zakharov system," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 153-166.
    7. Sun, Zhengjie, 2022. "A conservative scheme for two-dimensional Schrödinger equation based on multiquadric trigonometric quasi-interpolation approach," Applied Mathematics and Computation, Elsevier, vol. 423(C).
    8. Luigi Brugnano & Gianluca Frasca-Caccia & Felice Iavernaro, 2019. "Line Integral Solution of Hamiltonian PDEs," Mathematics, MDPI, vol. 7(3), pages 1-28, March.
    9. Jiang, Chaolong & Sun, Jianqiang & Li, Haochen & Wang, Yifan, 2017. "A fourth-order AVF method for the numerical integration of sine-Gordon equation," Applied Mathematics and Computation, Elsevier, vol. 313(C), pages 144-158.
    10. Zhang, Gengen, 2021. "Two conservative and linearly-implicit compact difference schemes for the nonlinear fourth-order wave equation," Applied Mathematics and Computation, Elsevier, vol. 401(C).
    11. Amodio, Pierluigi & Brugnano, Luigi & Iavernaro, Felice, 2019. "A note on the continuous-stage Runge–Kutta(–Nyström) formulation of Hamiltonian Boundary Value Methods (HBVMs)," Applied Mathematics and Computation, Elsevier, vol. 363(C), pages 1-1.
    12. Chen, Hao & Yang, Yeru, 2021. "Generalized Störmer-Cowell methods with efficient iterative solver for large-scale second-order stiff semilinear systems," Applied Mathematics and Computation, Elsevier, vol. 400(C).
    13. Martin-Vergara, Francisca & Rus, Francisco & Villatoro, Francisco R., 2019. "Padé numerical schemes for the sine-Gordon equation," Applied Mathematics and Computation, Elsevier, vol. 358(C), pages 232-243.
    14. Achouri, Talha, 2019. "Conservative finite difference scheme for the nonlinear fourth-order wave equation," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 121-131.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:339:y:2018:i:c:p:588-606. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.