IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v427y2022ics0096300322002065.html
   My bibliography  Save this article

A new structural uncertainty analysis method based on polynomial expansions

Author

Listed:
  • Zheng, Yongfeng
  • Gu, Yan
  • Gao, Liang
  • Wang, Yanzheng
  • Qu, Jinping
  • Zhang, Chuanzeng

Abstract

This paper proposes a new method based on the polynomial expansions for structural uncertainty analysis. A generalized finite difference method (GFDM) based on the Taylor expansion is adopted to compute the structural responses, which has good adaptabilities to the analysis domains due to its meshless property. With the help of the polynomial chaos expansions (PCE), random variables subjected to any probability distribution are implicitly quantified. The GFDMPCE method combines GFDM and PCE, is verified by the classical Monte Carlo method (MCM) in terms of calculation accuracy and efficiency. This method is non-intrusive, rigorous in mathematical theory, and shows bright prospects for the robust analysis of large-scale and complex structures.

Suggested Citation

  • Zheng, Yongfeng & Gu, Yan & Gao, Liang & Wang, Yanzheng & Qu, Jinping & Zhang, Chuanzeng, 2022. "A new structural uncertainty analysis method based on polynomial expansions," Applied Mathematics and Computation, Elsevier, vol. 427(C).
  • Handle: RePEc:eee:apmaco:v:427:y:2022:i:c:s0096300322002065
    DOI: 10.1016/j.amc.2022.127122
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300322002065
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2022.127122?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shukla, Vivekanand & Singh, Jeeoot, 2022. "Thermo-mechanical stability analysis of angle-ply plates using meshless method," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    2. Sudret, Bruno, 2008. "Global sensitivity analysis using polynomial chaos expansions," Reliability Engineering and System Safety, Elsevier, vol. 93(7), pages 964-979.
    3. Yu, Qian & Wang, Kunyang & Xia, Binhu & Li, Yibao, 2021. "First and second order unconditionally energy stable schemes for topology optimization based on phase field method," Applied Mathematics and Computation, Elsevier, vol. 405(C).
    4. Alazwari, Mashhour A. & Rao, Singiresu S., 2022. "Uncertainty analysis of large structures using universal grey number theory," Applied Mathematics and Computation, Elsevier, vol. 416(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin Wang & Zhengyuan Shi, 2021. "Multi-Reconstruction from Points Cloud by Using a Modified Vector-Valued Allen–Cahn Equation," Mathematics, MDPI, vol. 9(12), pages 1-15, June.
    2. Daniel Harenberg & Stefano Marelli & Bruno Sudret & Viktor Winschel, 2019. "Uncertainty quantification and global sensitivity analysis for economic models," Quantitative Economics, Econometric Society, vol. 10(1), pages 1-41, January.
    3. Wang, Zequn & Wang, Pingfeng, 2015. "A double-loop adaptive sampling approach for sensitivity-free dynamic reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 346-356.
    4. Puppo, L. & Pedroni, N. & Maio, F. Di & Bersano, A. & Bertani, C. & Zio, E., 2021. "A Framework based on Finite Mixture Models and Adaptive Kriging for Characterizing Non-Smooth and Multimodal Failure Regions in a Nuclear Passive Safety System," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    5. Cheng, Kai & Lu, Zhenzhou, 2018. "Sparse polynomial chaos expansion based on D-MORPH regression," Applied Mathematics and Computation, Elsevier, vol. 323(C), pages 17-30.
    6. Gaspar, B. & Teixeira, A.P. & Guedes Soares, C., 2017. "Adaptive surrogate model with active refinement combining Kriging and a trust region method," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 277-291.
    7. Palar, Pramudita Satria & Zuhal, Lavi Rizki & Shimoyama, Koji, 2023. "Enhancing the explainability of regression-based polynomial chaos expansion by Shapley additive explanations," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    8. Jung, WoongHee & Taflanidis, Alexandros A., 2023. "Efficient global sensitivity analysis for high-dimensional outputs combining data-driven probability models and dimensionality reduction," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    9. Brown, S. & Beck, J. & Mahgerefteh, H. & Fraga, E.S., 2013. "Global sensitivity analysis of the impact of impurities on CO2 pipeline failure," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 43-54.
    10. Turati, Pietro & Pedroni, Nicola & Zio, Enrico, 2017. "Simulation-based exploration of high-dimensional system models for identifying unexpected events," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 317-330.
    11. Pronzato, Luc, 2019. "Sensitivity analysis via Karhunen–Loève expansion of a random field model: Estimation of Sobol’ indices and experimental design," Reliability Engineering and System Safety, Elsevier, vol. 187(C), pages 93-109.
    12. Hao, Wenrui & Lu, Zhenzhou & Wei, Pengfei, 2013. "Uncertainty importance measure for models with correlated normal variables," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 48-58.
    13. Pulch, Roland & ter Maten, E. Jan W. & Augustin, Florian, 2015. "Sensitivity analysis and model order reduction for random linear dynamical systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 111(C), pages 80-95.
    14. Oladyshkin, S. & Nowak, W., 2012. "Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 179-190.
    15. Wu, Zeping & Wang, Donghui & Okolo N, Patrick & Hu, Fan & Zhang, Weihua, 2016. "Global sensitivity analysis using a Gaussian Radial Basis Function metamodel," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 171-179.
    16. Keshtegar, Behrooz & Chakraborty, Subrata, 2018. "An efficient-robust structural reliability method by adaptive finite-step length based on Armijo line search," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 195-206.
    17. Ehre, Max & Papaioannou, Iason & Straub, Daniel, 2020. "Global sensitivity analysis in high dimensions with PLS-PCE," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    18. Deman, G. & Kerrou, J. & Benabderrahmane, H. & Perrochet, P., 2015. "Sensitivity analysis of groundwater lifetime expectancy to hydro-dispersive parameters: The case of ANDRA Meuse/Haute-Marne site," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 276-286.
    19. Shengwen Yin & Keliang Jin & Yu Bai & Wei Zhou & Zhonggang Wang, 2023. "Solution-Space-Reduction-Based Evidence Theory Method for Stiffness Evaluation of Air Springs with Epistemic Uncertainty," Mathematics, MDPI, vol. 11(5), pages 1-19, March.
    20. Zdeněk Kala, 2020. "Sensitivity Analysis in Probabilistic Structural Design: A Comparison of Selected Techniques," Sustainability, MDPI, vol. 12(11), pages 1-19, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:427:y:2022:i:c:s0096300322002065. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.