StreaMRAK a streaming multi-resolution adaptive kernel algorithm
Author
Abstract
Suggested Citation
DOI: 10.1016/j.amc.2022.127112
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Exterkate, Peter & Groenen, Patrick J.F. & Heij, Christiaan & van Dijk, Dick, 2016.
"Nonlinear forecasting with many predictors using kernel ridge regression,"
International Journal of Forecasting, Elsevier, vol. 32(3), pages 736-753.
- Peter Exterkate & Patrick J.F. Groenen & Christiaan Heij & Dick van Dijk, 2011. "Nonlinear Forecasting with Many Predictors using Kernel Ridge Regression," Tinbergen Institute Discussion Papers 11-007/4, Tinbergen Institute.
- Peter Exterkate & Patrick J.F. Groenen & Christiaan Heij & Dick van Dijk, 2013. "Nonlinear Forecasting With Many Predictors Using Kernel Ridge Regression," CREATES Research Papers 2013-16, Department of Economics and Business Economics, Aarhus University.
- Mhand Hifi & Rym M'Hallah, 2009. "A Literature Review on Circle and Sphere Packing Problems: Models and Methodologies," Advances in Operations Research, Hindawi, vol. 2009, pages 1-22, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022.
"How is machine learning useful for macroeconomic forecasting?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2019. "How is Machine Learning Useful for Macroeconomic Forecasting?," CIRANO Working Papers 2019s-22, CIRANO.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Working Papers 20-01, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Aug 2020.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & St'ephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Papers 2008.12477, arXiv.org.
- Thierry Moudiki & Frédéric Planchet & Areski Cousin, 2018.
"Multiple Time Series Forecasting Using Quasi-Randomized Functional Link Neural Networks,"
Risks, MDPI, vol. 6(1), pages 1-20, March.
- Thierry Moudiki & Frédéric Planchet & Areski Cousin, 2018. "Multiple Time Series Forecasting Using Quasi-Randomized Functional Link Neural Networks," Post-Print hal-02055155, HAL.
- Cheng, Kai & Lu, Zhenzhou, 2018. "Sparse polynomial chaos expansion based on D-MORPH regression," Applied Mathematics and Computation, Elsevier, vol. 323(C), pages 17-30.
- Xiangyang Huang & LiGuo Huang, 2023. "Spreading Points Using Gradient and Tabu," SN Operations Research Forum, Springer, vol. 4(2), pages 1-11, June.
- Piotr Sawicki & Hanna Sawicka & Marek Karkula & Krzysztof Zajda, 2025. "Combined Rough Sets and Rule-Based Expert System to Support Environmentally Oriented Sandwich Pallet Loading Problem," Energies, MDPI, vol. 18(2), pages 1-48, January.
- Sergei V. Akopov, 2018. "“Duty” and “Blame” in Russian Official Symbolic Representations of Sovereignty (1994-2018)," HSE Working papers WP BRP 61/PS/2018, National Research University Higher School of Economics.
- Peter Exterkate, 2011. "Modelling Issues in Kernel Ridge Regression," Tinbergen Institute Discussion Papers 11-138/4, Tinbergen Institute.
- Wojciech Victor Fulmyk, 2023. "Nonlinear Granger Causality using Kernel Ridge Regression," Papers 2309.05107, arXiv.org.
- Rajveer Jat & Daanish Padha, 2024. "Kernel Three Pass Regression Filter," Papers 2405.07292, arXiv.org, revised Feb 2025.
- Hifi, Mhand & Yousef, Labib, 2019. "A local search-based method for sphere packing problems," European Journal of Operational Research, Elsevier, vol. 274(2), pages 482-500.
- Frank J. Kampas & János D. Pintér & Ignacio Castillo, 2023. "Model Development and Solver Demonstrations Using Randomized Test Problems," SN Operations Research Forum, Springer, vol. 4(1), pages 1-15, March.
- Hauzenberger, Niko & Huber, Florian & Klieber, Karin, 2023.
"Real-time inflation forecasting using non-linear dimension reduction techniques,"
International Journal of Forecasting, Elsevier, vol. 39(2), pages 901-921.
- Niko Hauzenberger & Florian Huber & Karin Klieber, 2020. "Real-time Inflation Forecasting Using Non-linear Dimension Reduction Techniques," Papers 2012.08155, arXiv.org, revised Dec 2021.
- Milan Fičura, 2019. "Forecasting Foreign Exchange Rate Movements with k-Nearest-Neighbour, Ridge Regression and Feed-Forward Neural Networks," FFA Working Papers 1.001, Prague University of Economics and Business, revised 24 Nov 2019.
- Andreas Fischer & Igor Litvinchev & Tetyana Romanova & Petro Stetsyuk & Georgiy Yaskov, 2023. "Quasi-Packing Different Spheres with Ratio Conditions in a Spherical Container," Mathematics, MDPI, vol. 11(9), pages 1-19, April.
- Wei, Yu & Liang, Chao & Li, Yan & Zhang, Xunhui & Wei, Guiwu, 2020. "Can CBOE gold and silver implied volatility help to forecast gold futures volatility in China? Evidence based on HAR and Ridge regression models," Finance Research Letters, Elsevier, vol. 35(C).
- Kutateladze, Varlam, 2022. "The kernel trick for nonlinear factor modeling," International Journal of Forecasting, Elsevier, vol. 38(1), pages 165-177.
- Igor Litvinchev & Andreas Fischer & Tetyana Romanova & Petro Stetsyuk, 2024. "A New Class of Irregular Packing Problems Reducible to Sphere Packing in Arbitrary Norms," Mathematics, MDPI, vol. 12(7), pages 1-17, March.
- Xu Gong & Boqiang Lin, 2018. "Structural breaks and volatility forecasting in the copper futures market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(3), pages 290-339, March.
- Daiki Maki & Yasushi Ota, 2019. "Robust tests for ARCH in the presence of the misspecified conditional mean: A comparison of nonparametric approches," Papers 1907.12752, arXiv.org, revised Sep 2019.
- Yoshiki Nakajima & Naoya Sueishi, 2022. "Forecasting the Japanese macroeconomy using high-dimensional data," The Japanese Economic Review, Springer, vol. 73(2), pages 299-324, April.
More about this item
Keywords
Streaming; Reproducing kernel Hilbert space; Kernel methods; Laplcian pyramid; Adaptive kernel; Sub-sampling;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:426:y:2022:i:c:s0096300322001965. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.