IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v412y2022ics0096300321006627.html
   My bibliography  Save this article

Almost output regulation for switched linear systems with bumpless transfer control under destabilizing behaviors

Author

Listed:
  • Li, Lili
  • Ju, Mingzhe
  • Zhao, Ying
  • Liu, Tianhe

Abstract

Almost output regulation for switched linear systems with destabilizing behaviors, which means that the almost output regulation problems of all subsystems are unsolvable and some switching instants are unstable with finite increments of the Lyapunov function, is investigated based on the bumpless transfer control. Switching instants with decrements and increments of the Lyapunov function are described as stable and unstable switching instants respectively. Firstly, a hybrid average dwell time strategy is proposed to restrict the occurrence ratio of unstable/stable switching instants and reasonably arranges the number of stable switching instants to offset the increment of the Lyapunov function caused by unstable switching instants and insolvabilities of the involved problem for all subsystems. Then, by interpolating the gains of adjacent controllers within the minimum dwell time, a dynamic error feedback controller with bumpless transfer property is designed to suppress the control bumps induced by controller switchings. Finally, a numerical example is given to demonstrate the effectiveness of the proposed method.

Suggested Citation

  • Li, Lili & Ju, Mingzhe & Zhao, Ying & Liu, Tianhe, 2022. "Almost output regulation for switched linear systems with bumpless transfer control under destabilizing behaviors," Applied Mathematics and Computation, Elsevier, vol. 412(C).
  • Handle: RePEc:eee:apmaco:v:412:y:2022:i:c:s0096300321006627
    DOI: 10.1016/j.amc.2021.126578
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300321006627
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.126578?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Yi & Chen, Fei & Lang, Jiahong & Chen, Xiangyong & Wang, Jing, 2021. "Sliding mode control of persistent dwell-time switched systems with random data dropouts," Applied Mathematics and Computation, Elsevier, vol. 400(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Zongjie & Zhang, Yigang & Kong, Qingkai & Fang, Ting & Wang, Jing, 2022. "Observer-based H∞ control for persistent dwell-time switched networked nonlinear systems under packet dropout," Applied Mathematics and Computation, Elsevier, vol. 415(C).
    2. Li, Lili & Tuo, Yulong & Li, Tieshan & Tong, Meijuan & Wang, Shasha, 2022. "Time-varying formation control of multiple unmanned surface vessels with heterogeneous hydrodynamics subject to actuator attacks," Applied Mathematics and Computation, Elsevier, vol. 422(C).
    3. Wang, Haitao & Chen, Xiangyong & Wang, Jing, 2022. "H∞ sliding mode control for PDT-switched nonlinear systems under the dynamic event-triggered mechanism," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    4. Zhao, Zhi-Ye & Jin, Xiao-Zheng & Wu, Xiao-Ming & Wang, Hai & Chi, Jing, 2022. "Neural network-based fixed-time sliding mode control for a class of nonlinear Euler-Lagrange systems," Applied Mathematics and Computation, Elsevier, vol. 415(C).
    5. Dai, Shifang & Zha, Lijuan & Liu, Jinliang & Xie, Xiangpeng & Tian, Engang, 2022. "Fault detection filter design for networked systems with cyber attacks," Applied Mathematics and Computation, Elsevier, vol. 412(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:412:y:2022:i:c:s0096300321006627. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.