IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v411y2021ics0096300321006299.html
   My bibliography  Save this article

A high-order L2 type difference scheme for the time-fractional diffusion equation

Author

Listed:
  • Alikhanov, Anatoly A.
  • Huang, Chengming

Abstract

The present paper is devoted to constructing L2 type difference analog of the Caputo fractional derivative. The fundamental features of this difference operator are studied and it is used to construct difference schemes generating approximations of the second and fourth order in space and the (3−α)th-order in time for the time fractional diffusion equation with variable coefficients. Difference schemes were also constructed for the variable-order diffusion equation and the generalized fractional-order diffusion equation of the Sobolev type. Stability of the schemes under consideration as well as their convergence with the rate equal to the order of the approximation error are proven. The received results are supported by the numerical computations performed for some test problems.

Suggested Citation

  • Alikhanov, Anatoly A. & Huang, Chengming, 2021. "A high-order L2 type difference scheme for the time-fractional diffusion equation," Applied Mathematics and Computation, Elsevier, vol. 411(C).
  • Handle: RePEc:eee:apmaco:v:411:y:2021:i:c:s0096300321006299
    DOI: 10.1016/j.amc.2021.126545
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300321006299
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.126545?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alikhanov, Anatoly A., 2015. "Numerical methods of solutions of boundary value problems for the multi-term variable-distributed order diffusion equation," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 12-22.
    2. Wang, Yuan-Ming & Ren, Lei, 2019. "A high-order L2-compact difference method for Caputo-type time-fractional sub-diffusion equations with variable coefficients," Applied Mathematics and Computation, Elsevier, vol. 342(C), pages 71-93.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kedia, Nikki & Alikhanov, Anatoly A. & Singh, Vineet Kumar, 2024. "Robust finite difference scheme for the non-linear generalized time-fractional diffusion equation with non-smooth solution," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 219(C), pages 337-354.
    2. Zhou, Ziyi & Zhang, Haixiang & Yang, Xuehua, 2024. "CN ADI fast algorithm on non-uniform meshes for the three-dimensional nonlocal evolution equation with multi-memory kernels in viscoelastic dynamics," Applied Mathematics and Computation, Elsevier, vol. 474(C).
    3. Xuhao Li & Patricia J. Y. Wong, 2022. "gL 1 Scheme for Solving a Class of Generalized Time-Fractional Diffusion Equations," Mathematics, MDPI, vol. 10(8), pages 1-14, April.
    4. Srivastava, Nikhil & Singh, Vineet Kumar, 2023. "L3 approximation of Caputo derivative and its application to time-fractional wave equation-(I)," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 532-557.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumar, Yashveer & Singh, Vineet Kumar, 2021. "Computational approach based on wavelets for financial mathematical model governed by distributed order fractional differential equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 531-569.
    2. Adán J. Serna-Reyes & Jorge E. Macías-Díaz & Nuria Reguera, 2021. "A Convergent Three-Step Numerical Method to Solve a Double-Fractional Two-Component Bose–Einstein Condensate," Mathematics, MDPI, vol. 9(12), pages 1-22, June.
    3. Zheng, Xiangcheng & Jia, Jinhong & Guo, Xu, 2023. "Eliminating solution singularity of variably distributed-order time-fractional diffusion equation via strongly singular initial distribution," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    4. Kumar, Yashveer & Yadav, Poonam & Singh, Vineet Kumar, 2023. "Distributed order Gauss-Quadrature scheme for distributed order fractional sub-diffusion model," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    5. Wang, Yuan-Ming & Wen, Xin, 2020. "A compact exponential difference method for multi-term time-fractional convection-reaction-diffusion problems with non-smooth solutions," Applied Mathematics and Computation, Elsevier, vol. 381(C).
    6. Kolade M. Owolabi & Sonal Jain & Edson Pindza, 2024. "Investigating the Dynamic Behavior of Integer and Noninteger Order System of Predation with Holling’s Response," Mathematics, MDPI, vol. 12(10), pages 1-25, May.
    7. Ahmed S. Hendy & Jorge E. Macías-Díaz, 2020. "A Discrete Grönwall Inequality and Energy Estimates in the Analysis of a Discrete Model for a Nonlinear Time-Fractional Heat Equation," Mathematics, MDPI, vol. 8(9), pages 1-15, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:411:y:2021:i:c:s0096300321006299. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.