IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i9p1539-d410864.html
   My bibliography  Save this article

A Discrete Grönwall Inequality and Energy Estimates in the Analysis of a Discrete Model for a Nonlinear Time-Fractional Heat Equation

Author

Listed:
  • Ahmed S. Hendy

    (Department of Computational Mathematics and Computer Science, Institute of Natural Sciences and Mathematics, Ural Federal University, 19 Mira St., 620002 Yekaterinburg, Russia
    Department of Mathematics, Faculty of Science, Benha University, Benha 13511, Egypt)

  • Jorge E. Macías-Díaz

    (Department of Mathematics, School of Digital Technologies, Tallinn University, Narva Rd. 25, 10120 Tallinn, Estonia
    Departamento de Matemáticas y Física, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Avenida Universidad 940, Ciudad Universitaria, Aguascalientes 20121, Ags., Mexico)

Abstract

In the present work, we investigate the efficiency of a numerical scheme to solve a nonlinear time-fractional heat equation with sufficiently smooth solutions, which was previously reported in the literature [Fract. Calc. Appl. Anal. 16 : 892–910 (2013)]. In that article, the authors established the stability and consistency of the discrete model using arguments from Fourier analysis. As opposed to that work, in the present work, we use the method of energy inequalities to show that the scheme is stable and converges to the exact solution with order O ( τ 2 − α + h 4 ) , in the case that 0 < α < 1 satisfies 3 α ≥ 3 2 , which means that 0.369 ⪅ α ≤ 1 . The novelty of the present work lies in the derivation of suitable energy estimates, and a discrete fractional Grönwall inequality, which is consistent with the discrete approximation of the Caputo fractional derivative of order 0 < α < 1 used for that scheme at t k + 1 / 2 .

Suggested Citation

  • Ahmed S. Hendy & Jorge E. Macías-Díaz, 2020. "A Discrete Grönwall Inequality and Energy Estimates in the Analysis of a Discrete Model for a Nonlinear Time-Fractional Heat Equation," Mathematics, MDPI, vol. 8(9), pages 1-15, September.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:9:p:1539-:d:410864
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/9/1539/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/9/1539/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Yuan-Ming & Ren, Lei, 2019. "A high-order L2-compact difference method for Caputo-type time-fractional sub-diffusion equations with variable coefficients," Applied Mathematics and Computation, Elsevier, vol. 342(C), pages 71-93.
    2. Li, Lili & Zhou, Boya & Chen, Xiaoli & Wang, Zhiyong, 2018. "Convergence and stability of compact finite difference method for nonlinear time fractional reaction–diffusion equations with delay," Applied Mathematics and Computation, Elsevier, vol. 337(C), pages 144-152.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alikhanov, Anatoly A. & Huang, Chengming, 2021. "A high-order L2 type difference scheme for the time-fractional diffusion equation," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    2. Adán J. Serna-Reyes & Jorge E. Macías-Díaz & Nuria Reguera, 2021. "A Convergent Three-Step Numerical Method to Solve a Double-Fractional Two-Component Bose–Einstein Condensate," Mathematics, MDPI, vol. 9(12), pages 1-22, June.
    3. Zhang, Qifeng & Ren, Yunzhu & Lin, Xiaoman & Xu, Yinghong, 2019. "Uniform convergence of compact and BDF methods for the space fractional semilinear delay reaction–diffusion equations," Applied Mathematics and Computation, Elsevier, vol. 358(C), pages 91-110.
    4. A. S. Hendy & R. H. De Staelen, 2020. "Theoretical Analysis (Convergence and Stability) of a Difference Approximation for Multiterm Time Fractional Convection Diffusion-Wave Equations with Delay," Mathematics, MDPI, vol. 8(10), pages 1-20, October.
    5. Hosseininia, M. & Heydari, M.H., 2019. "Legendre wavelets for the numerical solution of nonlinear variable-order time fractional 2D reaction-diffusion equation involving Mittag–Leffler non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 400-407.
    6. Li, Lili & Zhao, Dan & She, Mianfu & Chen, Xiaoli, 2022. "On high order numerical schemes for fractional differential equations by block-by-block approach," Applied Mathematics and Computation, Elsevier, vol. 425(C).
    7. Kolade M. Owolabi & Sonal Jain & Edson Pindza, 2024. "Investigating the Dynamic Behavior of Integer and Noninteger Order System of Predation with Holling’s Response," Mathematics, MDPI, vol. 12(10), pages 1-27, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:9:p:1539-:d:410864. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.