IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v268y2015icp12-22.html
   My bibliography  Save this article

Numerical methods of solutions of boundary value problems for the multi-term variable-distributed order diffusion equation

Author

Listed:
  • Alikhanov, Anatoly A.

Abstract

Solutions of the Dirichlet and Robin boundary value problems for the multi-term variable-distributed order diffusion equation are studied. A priori estimates for the corresponding differential and difference problems are obtained by using the method of the energy inequalities. The stability and convergence of the difference schemes follow from a priory estimates. The credibility of the obtained results is verified by performing numerical calculations for test problems.

Suggested Citation

  • Alikhanov, Anatoly A., 2015. "Numerical methods of solutions of boundary value problems for the multi-term variable-distributed order diffusion equation," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 12-22.
  • Handle: RePEc:eee:apmaco:v:268:y:2015:i:c:p:12-22
    DOI: 10.1016/j.amc.2015.06.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300315008267
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.06.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yuan-Ming & Wen, Xin, 2020. "A compact exponential difference method for multi-term time-fractional convection-reaction-diffusion problems with non-smooth solutions," Applied Mathematics and Computation, Elsevier, vol. 381(C).
    2. Kumar, Yashveer & Yadav, Poonam & Singh, Vineet Kumar, 2023. "Distributed order Gauss-Quadrature scheme for distributed order fractional sub-diffusion model," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    3. Alikhanov, Anatoly A. & Huang, Chengming, 2021. "A high-order L2 type difference scheme for the time-fractional diffusion equation," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    4. Kumar, Yashveer & Singh, Vineet Kumar, 2021. "Computational approach based on wavelets for financial mathematical model governed by distributed order fractional differential equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 531-569.
    5. Zheng, Xiangcheng & Jia, Jinhong & Guo, Xu, 2023. "Eliminating solution singularity of variably distributed-order time-fractional diffusion equation via strongly singular initial distribution," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:268:y:2015:i:c:p:12-22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.