IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v411y2021ics0096300321006160.html
   My bibliography  Save this article

Asynchronous H∞ observer-based control synthesis of nonhomogeneous Markovian jump systems with generalized incomplete transition rates

Author

Listed:
  • Nguyen, Ngoc Hoai An
  • Kim, Sung Hyun

Abstract

This paper deals with the problem of asynchronous H∞ observer-based control for continuous-time nonhomogeneous Markovian jump systems with generalized incomplete transition rates. Different from other existing papers, the effects of both nonhomogeneity and asynchronism on observer-based control design are discussed in detail to address more realistic phenomena. Furthermore, to decouple the Lyapunov matrix from the control gain while improving the control performance, this paper proposes a state extension method as an alternative to the conventional separation method. Not only that, to derive a set of LMI-based stabilization conditions, this paper presents a less conservative relaxation technique that reduces its computational burden. Finally, two illustrative examples are provided to show the validity of the proposed method.

Suggested Citation

  • Nguyen, Ngoc Hoai An & Kim, Sung Hyun, 2021. "Asynchronous H∞ observer-based control synthesis of nonhomogeneous Markovian jump systems with generalized incomplete transition rates," Applied Mathematics and Computation, Elsevier, vol. 411(C).
  • Handle: RePEc:eee:apmaco:v:411:y:2021:i:c:s0096300321006160
    DOI: 10.1016/j.amc.2021.126532
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300321006160
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.126532?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yun Chen & Zhangping Chen & Zhenyu Chen & Anke Xue, 2020. "Observer-based passive control of non-homogeneous Markov jump systems with random communication delays," International Journal of Systems Science, Taylor & Francis Journals, vol. 51(6), pages 1133-1147, April.
    2. Kang, Wei & Gao, Qingfei & Cao, Menglong & Cheng, Jun, 2020. "Finite-time control for Markovian jump systems subject to randomly occurring quantization," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    3. Yu, Peng & Ma, Yuechao, 2020. "Observer-based asynchronous control for Markov jump systems," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    4. Nguyen, Ngoc Hoai An & Kim, Sung Hyun, 2021. "Asynchronous dissipative control design for semi-Markovian jump systems with uncertain probability distribution functions of sojourn-time," Applied Mathematics and Computation, Elsevier, vol. 397(C).
    5. Wu, Yuyan & Cheng, Jun & Zhou, Xia & Cao, Jinde & Luo, Mengzhuo, 2021. "Asynchronous filtering for nonhomogeneous Markov jumping systems with deception attacks," Applied Mathematics and Computation, Elsevier, vol. 394(C).
    6. Jin Zhu & Pengfei Jiang, 2020. "Mean stability for a class of discrete-time non-homogeneous positive Markov jump linear systems," International Journal of Systems Science, Taylor & Francis Journals, vol. 51(16), pages 3163-3178, December.
    7. Nguyen, Khanh Hieu & Kim, Sung Hyun, 2020. "Observer-based control design of semi-Markovian jump systems with uncertain probability intensities and mode-transition-dependent sojourn-time distribution," Applied Mathematics and Computation, Elsevier, vol. 372(C).
    8. Li, Min & Liu, Ming & Zhang, Yingchun, 2020. "Asynchronous adaptive dynamic output feedback sliding mode control for singular markovian jump systems with actuator faults and uncertain transition rates," Applied Mathematics and Computation, Elsevier, vol. 371(C).
    9. Xu, Zhaowen & Su, Hongye & Shi, Peng & Wu, Zheng-Guang, 2019. "Asynchronous H∞ control of semi-Markov jump linear systems," Applied Mathematics and Computation, Elsevier, vol. 349(C), pages 270-280.
    10. Cai, Xiao & Zhong, Shouming & Wang, Jun & Shi, Kaibo, 2020. "Robust H∞ control for uncertain delayed T-S fuzzy systems with stochastic packet dropouts," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    11. Wu, Cheng-Lung & Caves, Robert E., 2002. "Modelling of aircraft rotation in a multiple airport environment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 38(3-4), pages 265-277, May.
    12. Hyun Kim, Sung, 2019. "Generalized relaxation techniques for robust H∞ filtering of nonhomogeneous Markovian jump systems," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 542-556.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lee, Won Il & Park, Bum Yong & Kim, Sung Hyun, 2022. "Relaxed observer-based stabilization and dissipativity conditions of T-S fuzzy systems with nonhomogeneous Markov jumps via non-PDC scheme," Applied Mathematics and Computation, Elsevier, vol. 434(C).
    2. Anh Tuan Vo & Thanh Nguyen Truong & Hee-Jun Kang, 2023. "Fixed-Time RBFNN-Based Prescribed Performance Control for Robot Manipulators: Achieving Global Convergence and Control Performance Improvement," Mathematics, MDPI, vol. 11(10), pages 1-25, May.
    3. Khanh Hieu Nguyen & Sung Hyun Kim, 2022. "Event-Triggered Non-PDC Filter Design of Fuzzy Markovian Jump Systems under Mismatch Phenomena," Mathematics, MDPI, vol. 10(16), pages 1-25, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Lanxin & Long, Yue & Li, Tieshan & Yang, Hanqing & Philip Chen, C.L., 2024. "Asynchronous attack tolerant control for Markov jump cyber-physical systems under hybrid cyber-attacks," Applied Mathematics and Computation, Elsevier, vol. 470(C).
    2. Zhao, Yinghong & Ma, Yuechao, 2021. "Asynchronous H∞ control for hidden singular Markov jump systems with incomplete transition probabilities via state decomposition approach," Applied Mathematics and Computation, Elsevier, vol. 407(C).
    3. Nguyen, Ngoc Hoai An & Kim, Sung Hyun, 2021. "Asynchronous dissipative control design for semi-Markovian jump systems with uncertain probability distribution functions of sojourn-time," Applied Mathematics and Computation, Elsevier, vol. 397(C).
    4. Jiang, Tingting & Zhang, Yuping & Zeng, Yong & Zhong, Shouming & Shi, Kaibo & Cai, Xiao, 2021. "Finite-time analysis for networked predictive control systems with induced time delays and data packet dropouts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    5. Wang, Xin & Zhuang, Guangming & Chen, Guoliang & Ma, Qian & Lu, Junwei, 2022. "Asynchronous mixed H∞ and passive control for fuzzy singular delayed Markovian jump system via hidden Markovian model mechanism," Applied Mathematics and Computation, Elsevier, vol. 429(C).
    6. Fan, Yi & Wang, Pengjun & Heidari, Ali Asghar & Chen, Huiling & HamzaTurabieh, & Mafarja, Majdi, 2022. "Random reselection particle swarm optimization for optimal design of solar photovoltaic modules," Energy, Elsevier, vol. 239(PA).
    7. Xu, Qiyi & Zhang, Ning & Qi, Wenhai, 2023. "Finite-time control for discrete-time nonlinear Markov switching LPV systems with DoS attacks," Applied Mathematics and Computation, Elsevier, vol. 443(C).
    8. Sun, Xiaoqian & Wandelt, Sebastian & Hansen, Mark & Li, Ang, 2017. "Multiple airport regions based on inter-airport temporal distances," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 101(C), pages 84-98.
    9. Li, Jiajia & Tian, Xin & Wei, Guoliang, 2022. "Asynchronous partially mode-dependent control for switched larger-scale nonlinear systems with bounded sojourn time," Applied Mathematics and Computation, Elsevier, vol. 418(C).
    10. Lü, Shao-Yu & Jin, Xiao-Zheng & Wu, Xiao-Ming & Ding, Li-Jian & Chi, Jing, 2022. "Robust adaptive event-triggered fault-tolerant control for time-varying systems against perturbations and faulty actuators," Applied Mathematics and Computation, Elsevier, vol. 426(C).
    11. Jaehn, Florian & Neumann, Simone, 2015. "Airplane boarding," European Journal of Operational Research, Elsevier, vol. 244(2), pages 339-359.
    12. Wu, Zhenyu & Chen, Jiawei & Zhang, Xuexi & Xiao, Zehui & Tao, Jie & Wang, Xiaofeng, 2022. "Dynamic event-triggered synchronization of complex networks with switching topologies: Asynchronous observer-based case," Applied Mathematics and Computation, Elsevier, vol. 435(C).
    13. Xie, Lifei & Cheng, Jun & Wang, Hailing & Wang, Jiange & Hu, Mengjie & Zhou, Zhidong, 2022. "Memory-based event-triggered asynchronous control for semi-Markov switching systems," Applied Mathematics and Computation, Elsevier, vol. 415(C).
    14. Li, Qiang & Liang, Jinling, 2022. "Non-fragile asynchronous state estimation for Markovian switching CVNs with partly accessible mode detection: The discrete-time case," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    15. Wu, Yanqi & Zhang, Junfeng & Lin, Peng, 2022. "Non-fragile hybrid-triggered control of networked positive switched systems with cyber attacks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    16. Malandri, Caterina & Mantecchini, Luca & Reis, Vasco, 2019. "Aircraft turnaround and industrial actions: How ground handlers' strikes affect airport airside operational efficiency," Journal of Air Transport Management, Elsevier, vol. 78(C), pages 23-32.
    17. Kaviarasan, Boomipalagan & Kwon, Oh-Min & Park, Myeong Jin & Sakthivel, Rathinasamy, 2023. "Reduced-order filtering for semi-Markovian jump systems against randomly occurring false data injection attacks," Applied Mathematics and Computation, Elsevier, vol. 444(C).
    18. Saravanakumar, Ramasamy & Datta, Rupak & Cao, Yang, 2022. "New insights on fuzzy sampled-data stabilization of delayed nonlinear systems," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    19. Zhang, Ning & Qi, Wenhai & Pang, Guocheng & Cheng, Jun & Shi, Kaibo, 2022. "Observer-based sliding mode control for fuzzy stochastic switching systems with deception attacks," Applied Mathematics and Computation, Elsevier, vol. 427(C).
    20. Selvaraj, P. & Kwon, O.M. & Lee, S.H. & Sakthivel, R., 2022. "Disturbance rejections of interval type-2 fuzzy systems under event-triggered control scheme," Applied Mathematics and Computation, Elsevier, vol. 431(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:411:y:2021:i:c:s0096300321006160. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.