IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v403y2021ics0096300321002800.html
   My bibliography  Save this article

Creep modelling of soft soil based on the fractional flow rule: Simulation and parameter study

Author

Listed:
  • Xiang, Guangjian
  • Yin, Deshun
  • Cao, Chenxi
  • Gao, Yunfei

Abstract

The creep deformation of soft soil is a critical factor in geotechnical design of engineering facilities built on soft soil foundations. In this study, a novel fractional creep model for soft soil is developed by introducing the Almeida fractional derivative into the classic elastic-viscoplastic model. A series of numerical analyses are conducted to determine the kernel function of the proposed model with the best performance, and the good agreement between the model predictions and test results is observed. With the advantage of introducing the fractional flow rule, the fractional creep model exhibits higher accuracy and convenience than conventional models as fewer material parameters and state variables are required. Furthermore, a parameter study reveals that the fractional order directly relates to the stress level, and the different deformation patterns of soft soil under low and high stresses could be reflected by the tendency of the order.

Suggested Citation

  • Xiang, Guangjian & Yin, Deshun & Cao, Chenxi & Gao, Yunfei, 2021. "Creep modelling of soft soil based on the fractional flow rule: Simulation and parameter study," Applied Mathematics and Computation, Elsevier, vol. 403(C).
  • Handle: RePEc:eee:apmaco:v:403:y:2021:i:c:s0096300321002800
    DOI: 10.1016/j.amc.2021.126190
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300321002800
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.126190?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tarasov, Vasily E. & Tarasova, Valentina V., 2018. "Macroeconomic models with long dynamic memory: Fractional calculus approach," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 466-486.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cai, Wei & Wang, Zhouquan & Wang, Fajie, 2024. "Temperature and strain-rate dependent fractional constitutive model for glassy polymers," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ertuğrul Karaçuha & Vasil Tabatadze & Kamil Karaçuha & Nisa Özge Önal & Esra Ergün, 2020. "Deep Assessment Methodology Using Fractional Calculus on Mathematical Modeling and Prediction of Gross Domestic Product per Capita of Countries," Mathematics, MDPI, vol. 8(4), pages 1-18, April.
    2. Xu Wang & JinRong Wang & Michal Fečkan, 2020. "BP Neural Network Calculus in Economic Growth Modelling of the Group of Seven," Mathematics, MDPI, vol. 8(1), pages 1-11, January.
    3. Chu, Yu-Ming & Bekiros, Stelios & Zambrano-Serrano, Ernesto & Orozco-López, Onofre & Lahmiri, Salim & Jahanshahi, Hadi & Aly, Ayman A., 2021. "Artificial macro-economics: A chaotic discrete-time fractional-order laboratory model," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    4. Vasily E. Tarasov, 2019. "Rules for Fractional-Dynamic Generalizations: Difficulties of Constructing Fractional Dynamic Models," Mathematics, MDPI, vol. 7(6), pages 1-50, June.
    5. Dipak Kumar Jana & Asim Kumar Das & Sahidul Islam, 2024. "Effect of memory on an inventory model for deteriorating item: fractional calculus approach," OPSEARCH, Springer;Operational Research Society of India, vol. 61(4), pages 2360-2378, December.
    6. Ruby, & Mandal, Moumita, 2024. "Convergence analysis and numerical implementation of projection methods for solving classical and fractional Volterra integro-differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 225(C), pages 889-913.
    7. Hao Ming & JinRong Wang & Michal Fečkan, 2019. "The Application of Fractional Calculus in Chinese Economic Growth Models," Mathematics, MDPI, vol. 7(8), pages 1-6, July.
    8. Tarasov, Vasily E., 2020. "Fractional econophysics: Market price dynamics with memory effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    9. Jean-Philippe Aguilar & Jan Korbel & Nicolas Pesci, 2021. "On the Quantitative Properties of Some Market Models Involving Fractional Derivatives," Mathematics, MDPI, vol. 9(24), pages 1-24, December.
    10. Vasily E. Tarasov & Valentina V. Tarasova, 2019. "Dynamic Keynesian Model of Economic Growth with Memory and Lag," Mathematics, MDPI, vol. 7(2), pages 1-17, February.
    11. Calisse, Frank, 2019. "The impact of long-range dependence in the capital stock on interest rate and wealth distribution," VfS Annual Conference 2019 (Leipzig): 30 Years after the Fall of the Berlin Wall - Democracy and Market Economy 203591, Verein für Socialpolitik / German Economic Association.
    12. Vasily E. Tarasov, 2019. "On History of Mathematical Economics: Application of Fractional Calculus," Mathematics, MDPI, vol. 7(6), pages 1-28, June.
    13. Vasily E. Tarasov, 2020. "Non-Linear Macroeconomic Models of Growth with Memory," Mathematics, MDPI, vol. 8(11), pages 1-22, November.
    14. Tomas Skovranek, 2019. "The Mittag-Leffler Fitting of the Phillips Curve," Mathematics, MDPI, vol. 7(7), pages 1-11, July.
    15. Anatoly N. Kochubei & Yuri Kondratiev, 2019. "Growth Equation of the General Fractional Calculus," Mathematics, MDPI, vol. 7(7), pages 1-8, July.
    16. José A. Tenreiro Machado & Maria Eugénia Mata & António M. Lopes, 2020. "Fractional Dynamics and Pseudo-Phase Space of Country Economic Processes," Mathematics, MDPI, vol. 8(1), pages 1-17, January.
    17. Jean-Philippe Aguilar & Jan Korbel & Yuri Luchko, 2019. "Applications of the Fractional Diffusion Equation to Option Pricing and Risk Calculations," Mathematics, MDPI, vol. 7(9), pages 1-23, September.
    18. Mohamed I. Abbas & Snezhana Hristova, 2021. "On the Initial Value Problems for Caputo-Type Generalized Proportional Vector-Order Fractional Differential Equations," Mathematics, MDPI, vol. 9(21), pages 1-10, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:403:y:2021:i:c:s0096300321002800. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.