IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v401y2021ics0096300321001089.html
   My bibliography  Save this article

Convergence of the mimetic finite difference and fitted mimetic finite difference method for options pricing

Author

Listed:
  • Attipoe, David Sena
  • Tambue, Antoine

Abstract

We present in this paper two novel numerical spatial discretization techniques based on the mimetic finite difference method for a degenerated partial differential equation (PDE) in one dimension. This PDE is well known as the Black-Scholes PDE which govern option pricing. To handle the degeneracy of the PDE, a novel fitted mimetic finite difference scheme is proposed together with the standard mimetic finite difference method. The temporal discretization is performing using standard implicit scheme. Furthermore rigorous convergence proofs in appropriate normed spaces are proposed. We validate the theoretical results by presenting numerical results and simulations. Those numerical experiments show that our two novel schemes outperform the standard finite difference method and the standard fitted finite volume method in terms of accuracy.

Suggested Citation

  • Attipoe, David Sena & Tambue, Antoine, 2021. "Convergence of the mimetic finite difference and fitted mimetic finite difference method for options pricing," Applied Mathematics and Computation, Elsevier, vol. 401(C).
  • Handle: RePEc:eee:apmaco:v:401:y:2021:i:c:s0096300321001089
    DOI: 10.1016/j.amc.2021.126060
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300321001089
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.126060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. Wang & X. Q. Yang & K. L. Teo, 2006. "Power Penalty Method for a Linear Complementarity Problem Arising from American Option Valuation," Journal of Optimization Theory and Applications, Springer, vol. 129(2), pages 227-254, May.
    2. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yury Poveshchenko & Viktoriia Podryga & Parvin Rahimly, 2022. "On Convergence of Support Operator Method Schemes for Differential Rotational Operations on Tetrahedral Meshes Applied to Magnetohydrodynamic Problems," Mathematics, MDPI, vol. 10(20), pages 1-18, October.
    2. Cho, Junhyun & Kim, Yejin & Lee, Sungchul, 2022. "An accurate and stable numerical method for option hedge parameters," Applied Mathematics and Computation, Elsevier, vol. 430(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen Li & Song Wang, 2014. "A numerical method for pricing European options with proportional transaction costs," Journal of Global Optimization, Springer, vol. 60(1), pages 59-78, September.
    2. Lesmana, Donny Citra & Wang, Song, 2015. "Penalty approach to a nonlinear obstacle problem governing American put option valuation under transaction costs," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 318-330.
    3. Song-Ping Zhu & Xin-Jiang He & XiaoPing Lu, 2018. "A new integral equation formulation for American put options," Quantitative Finance, Taylor & Francis Journals, vol. 18(3), pages 483-490, March.
    4. W. Li & S. Wang, 2009. "Penalty Approach to the HJB Equation Arising in European Stock Option Pricing with Proportional Transaction Costs," Journal of Optimization Theory and Applications, Springer, vol. 143(2), pages 279-293, November.
    5. Chen, Wen & Wang, Song, 2017. "A power penalty method for a 2D fractional partial differential linear complementarity problem governing two-asset American option pricing," Applied Mathematics and Computation, Elsevier, vol. 305(C), pages 174-187.
    6. Kai Zhang & Xiaoqi Yang, 2018. "Power Penalty Approach to American Options Pricing Under Regime Switching," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 311-331, October.
    7. William R. Morgan, 2023. "Finance Must Be Defended: Cybernetics, Neoliberalism and Environmental, Social, and Governance (ESG)," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    8. Filipe Fontanela & Antoine Jacquier & Mugad Oumgari, 2019. "A Quantum algorithm for linear PDEs arising in Finance," Papers 1912.02753, arXiv.org, revised Feb 2021.
    9. Weihan Li & Jin E. Zhang & Xinfeng Ruan & Pakorn Aschakulporn, 2024. "An empirical study on the early exercise premium of American options: Evidence from OEX and XEO options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(7), pages 1117-1153, July.
    10. Jun, Doobae & Ku, Hyejin, 2015. "Static hedging of chained-type barrier options," The North American Journal of Economics and Finance, Elsevier, vol. 33(C), pages 317-327.
    11. Thomas Kokholm & Martin Stisen, 2015. "Joint pricing of VIX and SPX options with stochastic volatility and jump models," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 16(1), pages 27-48, January.
    12. Paul Ormerod, 2010. "La crisis actual y la culpabilidad de la teoría macroeconómica," Revista de Economía Institucional, Universidad Externado de Colombia - Facultad de Economía, vol. 12(22), pages 111-128, January-J.
    13. An Chen & Thai Nguyen & Thorsten Sehner, 2022. "Unit-Linked Tontine: Utility-Based Design, Pricing and Performance," Risks, MDPI, vol. 10(4), pages 1-27, April.
    14. Kearney, Fearghal & Shang, Han Lin & Sheenan, Lisa, 2019. "Implied volatility surface predictability: The case of commodity markets," Journal of Banking & Finance, Elsevier, vol. 108(C).
    15. Boyarchenko, Svetlana & Levendorskii[caron], Sergei, 2007. "Optimal stopping made easy," Journal of Mathematical Economics, Elsevier, vol. 43(2), pages 201-217, February.
    16. Robert C. Merton, 2006. "Paul Samuelson and Financial Economics," The American Economist, Sage Publications, vol. 50(2), pages 9-31, October.
    17. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Working Papers hal-02946146, HAL.
    18. Peter Carr & Liuren Wu, 2014. "Static Hedging of Standard Options," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 3-46.
    19. Ammann, Manuel & Kind, Axel & Wilde, Christian, 2003. "Are convertible bonds underpriced? An analysis of the French market," Journal of Banking & Finance, Elsevier, vol. 27(4), pages 635-653, April.
    20. Jeremy Leake, 2003. "Credit spreads on sterling corporate bonds and the term structure of UK interest rates," Bank of England working papers 202, Bank of England.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:401:y:2021:i:c:s0096300321001089. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.