IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v390y2021ics0096300320305981.html
   My bibliography  Save this article

A Modified Multiple Shooting Algorithm for Parameter Estimation in ODEs Using Adjoint Sensitivity Analysis

Author

Listed:
  • Aydogmus, Ozgur
  • TOR, Ali Hakan

Abstract

To increase the predictive power of a model, one needs to estimate its unknown parameters. Almost all parameter estimation techniques in ordinary differential equation models suffer from either a small convergence region or enormous computational cost. The method of multiple shooting, on the other hand, takes its place in between these two extremes. The computational cost of the algorithm is mostly due to the calculation of directional derivatives of objective and constraint functions. Here we modify the multiple shooting algorithm to use the adjoint method in calculating these derivatives. In the literature, this method is known to be a more stable and computationally efficient way of computing gradients of scalar functions. A predator-prey system is used to show the performance of the method and supply all necessary information for a successful and efficient implementation.

Suggested Citation

  • Aydogmus, Ozgur & TOR, Ali Hakan, 2021. "A Modified Multiple Shooting Algorithm for Parameter Estimation in ODEs Using Adjoint Sensitivity Analysis," Applied Mathematics and Computation, Elsevier, vol. 390(C).
  • Handle: RePEc:eee:apmaco:v:390:y:2021:i:c:s0096300320305981
    DOI: 10.1016/j.amc.2020.125644
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300320305981
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125644?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiaolei Xun & Jiguo Cao & Bani Mallick & Arnab Maity & Raymond J. Carroll, 2013. "Parameter Estimation of Partial Differential Equation Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(503), pages 1009-1020, September.
    2. Eligius M. T. Hendrix & Boglárka G.-Tóth, 2010. "Nonlinear Programming algorithms," Springer Optimization and Its Applications, in: Introduction to Nonlinear and Global Optimization, chapter 5, pages 91-136, Springer.
    3. Stirbet, Alexandrina D. & Rosenau, Philipp & Ströder, Andreas C. & Strasser, Reto J., 2001. "Parameter optimisation of fast chlorophyll fluorescence induction model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 56(4), pages 443-450.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laura M. Sangalli, 2021. "Spatial Regression With Partial Differential Equation Regularisation," International Statistical Review, International Statistical Institute, vol. 89(3), pages 505-531, December.
    2. Calcina, Sabrina S. & Gameiro, Marcio, 2021. "Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 719-732.
    3. M. Soledad Aronna & J. Frédéric Bonnans & Pierre Martinon, 2013. "A Shooting Algorithm for Optimal Control Problems with Singular Arcs," Journal of Optimization Theory and Applications, Springer, vol. 158(2), pages 419-459, August.
    4. Cao, Yankai & Zavala, Victor M. & D’Amato, Fernando, 2018. "Using stochastic programming and statistical extrapolation to mitigate long-term extreme loads in wind turbines," Applied Energy, Elsevier, vol. 230(C), pages 1230-1241.
    5. Bethany L. Nicholson & Wei Wan & Shivakumar Kameswaran & Lorenz T. Biegler, 2018. "Parallel cyclic reduction strategies for linear systems that arise in dynamic optimization problems," Computational Optimization and Applications, Springer, vol. 70(2), pages 321-350, June.
    6. Huster, Wolfgang R. & Vaupel, Yannic & Mhamdi, Adel & Mitsos, Alexander, 2018. "Validated dynamic model of an organic Rankine cycle (ORC) for waste heat recovery in a diesel truck," Energy, Elsevier, vol. 151(C), pages 647-661.
    7. Zebian, Hussam & Mitsos, Alexander, 2012. "A double-pinch criterion for regenerative Rankine cycles," Energy, Elsevier, vol. 40(1), pages 258-270.
    8. Siu, Tak Kuen, 2023. "European option pricing with market frictions, regime switches and model uncertainty," Insurance: Mathematics and Economics, Elsevier, vol. 113(C), pages 233-250.
    9. Gianluca Frasso & Jonathan Jaeger & Philippe Lambert, 2016. "Parameter estimation and inference in dynamic systems described by linear partial differential equations," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 100(3), pages 259-287, July.
    10. D. Gerard & M. Köppe & Q. Louveaux, 2017. "Guided dive for the spatial branch-and-bound," Journal of Global Optimization, Springer, vol. 68(4), pages 685-711, August.
    11. Seung-Jun Shin & Duck Bong Kim & Guodong Shao & Alexander Brodsky & David Lechevalier, 2017. "Developing a decision support system for improving sustainability performance of manufacturing processes," Journal of Intelligent Manufacturing, Springer, vol. 28(6), pages 1421-1440, August.
    12. Elaine A. Ferguson & Jason Matthiopoulos & Robert H. Insall & Dirk Husmeier, 2017. "Statistical inference of the mechanisms driving collective cell movement," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(4), pages 869-890, August.
    13. Brage Rugstad Knudsen & Hanne Kauko & Trond Andresen, 2019. "An Optimal-Control Scheme for Coordinated Surplus-Heat Exchange in Industry Clusters," Energies, MDPI, vol. 12(10), pages 1-22, May.
    14. Arnone, Eleonora & Azzimonti, Laura & Nobile, Fabio & Sangalli, Laura M., 2019. "Modeling spatially dependent functional data via regression with differential regularization," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 275-295.
    15. Lizarraga-Garcia, Enrique & Ghobeity, Amin & Totten, Mark & Mitsos, Alexander, 2013. "Optimal operation of a solar-thermal power plant with energy storage and electricity buy-back from grid," Energy, Elsevier, vol. 51(C), pages 61-70.
    16. Li, Jiayang & Zhang, Zhikun & Dai, Min & Ming, Ju & Wang, Xiangjun, 2023. "Diffusion equations with Markovian switching: Well-posedness, numerical generation and parameter inference," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    17. Mu Niu & Benn Macdonald & Simon Rogers & Maurizio Filippone & Dirk Husmeier, 2018. "Statistical inference in mechanistic models: time warping for improved gradient matching," Computational Statistics, Springer, vol. 33(2), pages 1091-1123, June.
    18. Dizqah, Arash M. & Maheri, Alireza & Busawon, Krishna, 2014. "An accurate method for the PV model identification based on a genetic algorithm and the interior-point method," Renewable Energy, Elsevier, vol. 72(C), pages 212-222.
    19. Máša, Vítězslav & Stehlík, Petr & Touš, Michal & Vondra, Marek, 2018. "Key pillars of successful energy saving projects in small and medium industrial enterprises," Energy, Elsevier, vol. 158(C), pages 293-304.
    20. Laura Azzimonti & Laura M. Sangalli & Piercesare Secchi & Maurizio Domanin & Fabio Nobile, 2015. "Blood Flow Velocity Field Estimation Via Spatial Regression With PDE Penalization," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1057-1071, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:390:y:2021:i:c:s0096300320305981. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.