IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v385y2020ics0096300320304148.html
   My bibliography  Save this article

Time-varying minimum-cost portfolio insurance under transaction costs problem via Beetle Antennae Search Algorithm (BAS)

Author

Listed:
  • Katsikis, Vasilios N.
  • Mourtas, Spyridon D.
  • Stanimirović, Predrag S.
  • Li, Shuai
  • Cao, Xinwei

Abstract

Portfolio insurance is a hedging strategy which is used to limit portfolio losses without having to sell off stock when stocks decline in value. Consequently, the minimization of the costs related to portfolio insurance is a very important investment strategy. On the one hand, a popular option to solve the static minimum-cost portfolio insurance problem is based on the use of linear programming (LP) methods. On the other hand, the static portfolio selection under transaction costs (PSTC) problem is usually approached by nonlinear programming (NLP) methods. In this article, we define and study the time-varying minimum-cost portfolio insurance under transaction costs (TV-MCPITC) problem in the form of a time-varying nonlinear programming (TV-NLP) problem. Using the Beetle Antennae Search (BAS) algorithm, we also provide an online solution to the static NLP problem. The online solution to a time-varying financial problem is a great technical analysis tool and along with fundamental analysis will enable the investors to make better decisions. To the best of our knowledge, an approach that incorporates modern meta-heuristic optimization techniques to provide a more realistic online solution to the TV-MCPITC problem is original. In this way, by presenting an online solution to a time-varying financial problem we highlight the limitations of static methods. Our approach is also verified by numerical experiments and computer simulations as an excellent alternative to conventional MATLAB methods.

Suggested Citation

  • Katsikis, Vasilios N. & Mourtas, Spyridon D. & Stanimirović, Predrag S. & Li, Shuai & Cao, Xinwei, 2020. "Time-varying minimum-cost portfolio insurance under transaction costs problem via Beetle Antennae Search Algorithm (BAS)," Applied Mathematics and Computation, Elsevier, vol. 385(C).
  • Handle: RePEc:eee:apmaco:v:385:y:2020:i:c:s0096300320304148
    DOI: 10.1016/j.amc.2020.125453
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300320304148
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125453?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Miguel Lobo & Maryam Fazel & Stephen Boyd, 2007. "Portfolio optimization with linear and fixed transaction costs," Annals of Operations Research, Springer, vol. 152(1), pages 341-365, July.
    2. Aliprantis, C. D. & Brown, D. J. & Werner, J., 2000. "Minimum-cost portfolio insurance," Journal of Economic Dynamics and Control, Elsevier, vol. 24(11-12), pages 1703-1719, October.
    3. Katsikis, Vasilios N. & Mourtas, Spyridon D., 2019. "A heuristic process on the existence of positive bases with applications to minimum-cost portfolio insurance in C[a, b]," Applied Mathematics and Computation, Elsevier, vol. 349(C), pages 221-244.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simos, Theodore E. & Katsikis, Vasilios N. & Mourtas, Spyridon D., 2022. "Multi-input bio-inspired weights and structure determination neuronet with applications in European Central Bank publications," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 451-465.
    2. Vasilios N. Katsikis & Spyridon D. Mourtas & Predrag S. Stanimirović & Shuai Li & Xinwei Cao, 2021. "Time-Varying Mean-Variance Portfolio Selection under Transaction Costs and Cardinality Constraint Problem via Beetle Antennae Search Algorithm (BAS)," SN Operations Research Forum, Springer, vol. 2(2), pages 1-26, June.
    3. Katsikis, Vasilios N. & Mourtas, Spyridon D. & Stanimirović, Predrag S. & Li, Shuai & Cao, Xinwei, 2023. "Time-varying minimum-cost portfolio insurance problem via an adaptive fuzzy-power LVI-PDNN," Applied Mathematics and Computation, Elsevier, vol. 441(C).
    4. Spyridon D. Mourtas & Vasilios N. Katsikis, 2022. "V-Shaped BAS: Applications on Large Portfolios Selection Problem," Computational Economics, Springer;Society for Computational Economics, vol. 60(4), pages 1353-1373, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vladislav N. Kovalnogov & Ruslan V. Fedorov & Dmitry A. Generalov & Andrey V. Chukalin & Vasilios N. Katsikis & Spyridon D. Mourtas & Theodore E. Simos, 2022. "Portfolio Insurance through Error-Correction Neural Networks," Mathematics, MDPI, vol. 10(18), pages 1-14, September.
    2. Vasilios N. Katsikis & Spyridon D. Mourtas, 2020. "ORPIT: A Matlab Toolbox for Option Replication and Portfolio Insurance in Incomplete Markets," Computational Economics, Springer;Society for Computational Economics, vol. 56(4), pages 711-721, December.
    3. Katsikis, Vasilios N. & Mourtas, Spyridon D. & Stanimirović, Predrag S. & Li, Shuai & Cao, Xinwei, 2023. "Time-varying minimum-cost portfolio insurance problem via an adaptive fuzzy-power LVI-PDNN," Applied Mathematics and Computation, Elsevier, vol. 441(C).
    4. Vasilios N. Katsikis & Spyridon D. Mourtas & Predrag S. Stanimirović & Shuai Li & Xinwei Cao, 2021. "Time-Varying Mean-Variance Portfolio Selection under Transaction Costs and Cardinality Constraint Problem via Beetle Antennae Search Algorithm (BAS)," SN Operations Research Forum, Springer, vol. 2(2), pages 1-26, June.
    5. Spyridon D. Mourtas & Vasilios N. Katsikis, 2022. "V-Shaped BAS: Applications on Large Portfolios Selection Problem," Computational Economics, Springer;Society for Computational Economics, vol. 60(4), pages 1353-1373, December.
    6. Hao Wang & Hao Zeng & Jiashan Wang, 2022. "An extrapolated iteratively reweighted $$\ell _1$$ ℓ 1 method with complexity analysis," Computational Optimization and Applications, Springer, vol. 83(3), pages 967-997, December.
    7. Gupta, Pankaj & Mittal, Garima & Mehlawat, Mukesh Kumar, 2013. "Expected value multiobjective portfolio rebalancing model with fuzzy parameters," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 190-203.
    8. Seyoung Park & Eun Ryung Lee & Sungchul Lee & Geonwoo Kim, 2019. "Dantzig Type Optimization Method with Applications to Portfolio Selection," Sustainability, MDPI, vol. 11(11), pages 1-32, June.
    9. Nonthachote Chatsanga & Andrew J. Parkes, 2016. "International Portfolio Optimisation with Integrated Currency Overlay Costs and Constraints," Papers 1611.01463, arXiv.org.
    10. Man Yiu Tsang & Tony Sit & Hoi Ying Wong, 2022. "Adaptive Robust Online Portfolio Selection," Papers 2206.01064, arXiv.org.
    11. Michele Costola & Bertrand Maillet & Zhining Yuan & Xiang Zhang, 2024. "Mean–variance efficient large portfolios: a simple machine learning heuristic technique based on the two-fund separation theorem," Annals of Operations Research, Springer, vol. 334(1), pages 133-155, March.
    12. Fatma Kılınç-Karzan, 2016. "On Minimal Valid Inequalities for Mixed Integer Conic Programs," Mathematics of Operations Research, INFORMS, vol. 41(2), pages 477-510, May.
    13. Zhijun Xu & Jing Zhou, 2023. "A simultaneous diagonalization based SOCP relaxation for portfolio optimization with an orthogonality constraint," Computational Optimization and Applications, Springer, vol. 85(1), pages 247-261, May.
    14. Yuichi Takano & Keisuke Nanjo & Noriyoshi Sukegawa & Shinji Mizuno, 2015. "Cutting plane algorithms for mean-CVaR portfolio optimization with nonconvex transaction costs," Computational Management Science, Springer, vol. 12(2), pages 319-340, April.
    15. Aliprantis, Charalambos D. & Polyrakis, Yiannis A. & Tourky, Rabee, 2002. "The cheapest hedge," Journal of Mathematical Economics, Elsevier, vol. 37(4), pages 269-295, July.
    16. Nikita Boyko & Timofey Turko & Vladimir Boginski & David E. Jeffcoat & Stanislav Uryasev & Grigoriy Zrazhevsky & Panos M. Pardalos, 2011. "Robust multi-sensor scheduling for multi-site surveillance," Journal of Combinatorial Optimization, Springer, vol. 22(1), pages 35-51, July.
    17. Kelsey Maass & Minsun Kim & Aleksandr Aravkin, 2022. "A Nonconvex Optimization Approach to IMRT Planning with Dose–Volume Constraints," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1366-1386, May.
    18. Giorgio Arici & Marco Dalai & Riccardo Leonardi & Arnaldo Spalvieri, 2018. "A Communication Theoretic Interpretation of Modern Portfolio Theory Including Short Sales, Leverage and Transaction Costs," JRFM, MDPI, vol. 12(1), pages 1-11, December.
    19. Haoran Wang & Shi Yu, 2021. "Robo-Advising: Enhancing Investment with Inverse Optimization and Deep Reinforcement Learning," Papers 2105.09264, arXiv.org.
    20. Martijn H. H. Schoot Uiterkamp & Marco E. T. Gerards & Johann L. Hurink, 2022. "On a Reduction for a Class of Resource Allocation Problems," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1387-1402, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:385:y:2020:i:c:s0096300320304148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.