IDEAS home Printed from https://ideas.repec.org/a/taf/tsysxx/v48y2017i13p2826-2837.html
   My bibliography  Save this article

Adaptive quantised fault-tolerant tracking control of uncertain nonlinear systems with unknown control direction and the prescribed accuracy

Author

Listed:
  • Yan-Hui Jing
  • Guang-Hong Yang

Abstract

In this paper, the problem of adaptive fault-tolerant tracking control for a class of uncertain nonlinear systems in the presence of input quantisation and unknown control direction is considered. By choosing a class of particular Nussbaum functions, an adaptive fault-tolerant control scheme is designed to compensate actuator faults and input quantisation while the control direction is unknown. Compared with the existing results, the proposed controller can directly compensate for the nonlinear term caused by actuator faults and the nonlinear decomposition on the quantiser without estimating its bound. Furthermore, via Barhalant's Lemma, it is proven that all the signals of the closed-loop system are globally uniformly bounded and the tracking error converges into a prescribed accuracy in prior. Finally, an illustrative example is used for verifying effectiveness of the proposed approach.

Suggested Citation

  • Yan-Hui Jing & Guang-Hong Yang, 2017. "Adaptive quantised fault-tolerant tracking control of uncertain nonlinear systems with unknown control direction and the prescribed accuracy," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(13), pages 2826-2837, October.
  • Handle: RePEc:taf:tsysxx:v:48:y:2017:i:13:p:2826-2837
    DOI: 10.1080/00207721.2017.1344893
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207721.2017.1344893
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207721.2017.1344893?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Zhefeng & Zhao, Feng & Ding, Shihong & Chen, Xiangyong, 2022. "Adaptive pre-assigned finite-time control of uncertain nonlinear systems with unknown control gains," Applied Mathematics and Computation, Elsevier, vol. 417(C).
    2. Dong Yu & Weiming Zhang & Jianlin Li & Weilin Yang & Dezhi Xu, 2020. "Disturbance Observer-Based Prescribed Performance Fault-Tolerant Control for a Multi-Area Interconnected Power System with a Hybrid Energy Storage System," Energies, MDPI, vol. 13(5), pages 1-15, March.
    3. Wu, Ziwen & Zhang, Tianping & Xia, Xiaonan & Hua, Yu, 2022. "Finite-time adaptive neural command filtered control for non-strict feedback uncertain multi-agent systems including prescribed performance and input nonlinearities," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    4. Aravindh, D. & Sakthivel, R. & Kong, Fanchao & Marshal Anthoni, S., 2020. "Finite-time reliable stabilization of uncertain semi-Markovian jump systems with input saturation," Applied Mathematics and Computation, Elsevier, vol. 384(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tsysxx:v:48:y:2017:i:13:p:2826-2837. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TSYS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.