IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v371y2020ics0096300319309257.html
   My bibliography  Save this article

Analytical and computational approaches on solitary wave solutions of the generalized equal width equation

Author

Listed:
  • GaziKarakoc, Seydi Battal
  • Ali, Khalid K.

Abstract

In this article, firstly numerical solutions of the generalized equal width (GEW) equation have been obtained by a Petrov-Galerkin finite element method using cubic B-spline base functions as element shape functions and quadratic B-spline base functions as the weight functions. In order to prove the practicability and robustness of the numerical algorithm, the error norms L2, L∞ and three invariants I1, I2 and I3 are computed. A linear stability analysis based on a Fourier method states that the numerical scheme is unconditionally stable. Secondly, we have proposed the modified extended tanh-function method with the Riccati differential equation, which is a convenient and an effective method, for getting the exact traveling wave solutions of the equation. Motion of single solitary wave is examined using the present methods. The obtained results are indicated both in tabular and graphical form.

Suggested Citation

  • GaziKarakoc, Seydi Battal & Ali, Khalid K., 2020. "Analytical and computational approaches on solitary wave solutions of the generalized equal width equation," Applied Mathematics and Computation, Elsevier, vol. 371(C).
  • Handle: RePEc:eee:apmaco:v:371:y:2020:i:c:s0096300319309257
    DOI: 10.1016/j.amc.2019.124933
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300319309257
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2019.124933?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. El-Wakil, S.A. & Abdou, M.A., 2007. "New exact travelling wave solutions using modified extended tanh-function method," Chaos, Solitons & Fractals, Elsevier, vol. 31(4), pages 840-852.
    2. Seydi Battal Gazi Karakoç & Turabi Geyikli, 2012. "Numerical Solution of the Modified Equal Width Wave Equation," International Journal of Differential Equations, Hindawi, vol. 2012, pages 1-15, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Attia Rani & Muhammad Shakeel & Mohammed Kbiri Alaoui & Ahmed M. Zidan & Nehad Ali Shah & Prem Junsawang, 2022. "Application of the Exp − φ ξ -Expansion Method to Find the Soliton Solutions in Biomembranes and Nerves," Mathematics, MDPI, vol. 10(18), pages 1-12, September.
    2. Borhanifar, A. & Kabir, M.M. & Maryam Vahdat, L., 2009. "New periodic and soliton wave solutions for the generalized Zakharov system and (2+1)-dimensional Nizhnik–Novikov–Veselov system," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1646-1654.
    3. Yusufoğlu, E. & Bekir, A., 2008. "The tanh and the sine–cosine methods for exact solutions of the MBBM and the Vakhnenko equations," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 1126-1133.
    4. Bekir, Ahmet & Cevikel, Adem C., 2009. "New exact travelling wave solutions of nonlinear physical models," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1733-1739.
    5. Yusufoğlu, Elcin & Bekir, Ahmet, 2008. "Exact solutions of coupled nonlinear evolution equations," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 842-848.
    6. Dubey, Shweta & Chakraverty, S., 2022. "Application of modified extended tanh method in solving fractional order coupled wave equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 198(C), pages 509-520.
    7. (Benn)Wu, Xu-Hong & He, Ji-Huan, 2008. "EXP-function method and its application to nonlinear equations," Chaos, Solitons & Fractals, Elsevier, vol. 38(3), pages 903-910.
    8. Korkmaz, Alper, 2017. "Exact solutions of space-time fractional EW and modified EW equations," Chaos, Solitons & Fractals, Elsevier, vol. 96(C), pages 132-138.
    9. Akinyemi, Lanre & Şenol, Mehmet & Iyiola, Olaniyi S., 2021. "Exact solutions of the generalized multidimensional mathematical physics models via sub-equation method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 211-233.
    10. Bekir, Ahmet & Boz, Ahmet, 2009. "Application of Exp-function method for (2+1)-dimensional nonlinear evolution equations," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 458-465.
    11. Soliman, A.A., 2009. "Exact solutions of KdV–Burgers’ equation by Exp-function method," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 1034-1039.
    12. Zdravković, S. & Zeković, S. & Bugay, A.N. & Petrović, J., 2021. "Two component model of microtubules and continuum approximation," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    13. Zdravković, Slobodan & Kavitha, Louis & Satarić, Miljko V. & Zeković, Slobodan & Petrović, Jovana, 2012. "Modified extended tanh-function method and nonlinear dynamics of microtubules," Chaos, Solitons & Fractals, Elsevier, vol. 45(11), pages 1378-1386.
    14. Verma, Pallavi & Kaur, Lakhveer, 2019. "Integrability, bilinearization and analytic study of new form of (3+1)-dimensional B-type Kadomstev–Petviashvili (BKP)- Boussinesq equation," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 879-886.
    15. El-Wakil, S.A. & Abdou, M.A., 2008. "The extended Fan sub-equation method and its applications for a class of nonlinear evolution equations," Chaos, Solitons & Fractals, Elsevier, vol. 36(2), pages 343-353.
    16. Bekir, Ahmet, 2009. "The tanh–coth method combined with the Riccati equation for solving non-linear equation," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1467-1474.
    17. Ranković, Dragana & Sivčević, Vladimir & Batova, Anna & Zdravković, Slobodan, 2023. "Three kinds of W-potentials in nonlinear biophysics of microtubules," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    18. Ranković, Dragana & Zdravković, Slobodan, 2022. "Two component model of microtubules – subsonic and supersonic solitary waves," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:371:y:2020:i:c:s0096300319309257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.