IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v366y2020ics0096300319307258.html
   My bibliography  Save this article

Projected Euler-Maruyama method for stochastic delay differential equations under a global monotonicity condition

Author

Listed:
  • Li, Min
  • Huang, Chengming

Abstract

In this paper, we investigate a projected Euler-Maruyama method for stochastic delay differential equations with variable delay under a global monotonicity condition. This condition admits some equations with highly nonlinear drift and diffusion coefficients. We appropriately generalize the idea of C-stability and B-consistency given by Beyn et al. (2016) to the case with delay. Moreover, the method is proved to be convergent with order one-half in a succinct way. Finally, some numerical examples are included to support our theoretical results.

Suggested Citation

  • Li, Min & Huang, Chengming, 2020. "Projected Euler-Maruyama method for stochastic delay differential equations under a global monotonicity condition," Applied Mathematics and Computation, Elsevier, vol. 366(C).
  • Handle: RePEc:eee:apmaco:v:366:y:2020:i:c:s0096300319307258
    DOI: 10.1016/j.amc.2019.124733
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300319307258
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2019.124733?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tan, Li & Yuan, Chenggui, 2018. "Strong convergence of a tamed theta scheme for NSDDEs with one-sided Lipschitz drift," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 607-623.
    2. Li, Xiuping & Cao, Wanrong, 2015. "On mean-square stability of two-step Maruyama methods for nonlinear neutral stochastic delay differential equations," Applied Mathematics and Computation, Elsevier, vol. 261(C), pages 373-381.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhenyu Wang & Qiang Ma & Xiaohua Ding, 2020. "Simulating Stochastic Differential Equations with Conserved Quantities by Improved Explicit Stochastic Runge–Kutta Methods," Mathematics, MDPI, vol. 8(12), pages 1-15, December.
    2. Zhao, Jingjun & Yi, Yulian & Xu, Yang, 2021. "Strong convergence of explicit schemes for highly nonlinear stochastic differential equations with Markovian switching," Applied Mathematics and Computation, Elsevier, vol. 398(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhenyu Wang & Qiang Ma & Xiaohua Ding, 2020. "Simulating Stochastic Differential Equations with Conserved Quantities by Improved Explicit Stochastic Runge–Kutta Methods," Mathematics, MDPI, vol. 8(12), pages 1-15, December.
    2. Mo, Haoyi & Deng, Feiqi & Zhang, Chaolong, 2017. "Exponential stability of the split-step θ-method for neutral stochastic delay differential equations with jumps," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 85-95.
    3. Rathinasamy, A. & Narayanasamy, J., 2019. "Mean square stability and almost sure exponential stability of two step Maruyama methods of stochastic delay Hopfield neural networks," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 126-152.
    4. Haoyi Mo & Xueyan Zhao & Feiqi Deng, 2017. "Exponential mean-square stability of the θ-method for neutral stochastic delay differential equations with jumps," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(3), pages 462-470, February.
    5. Huang, Jun & Yang, Lin & Trinh, Hieu, 2021. "Robust control for incremental quadratic constrained nonlinear time-delay systems subject to actuator saturation," Applied Mathematics and Computation, Elsevier, vol. 405(C).
    6. Ahmadian, D. & Farkhondeh Rouz, O. & Ballestra, L.V., 2019. "Stability analysis of split-step θ-Milstein method for a class of n-dimensional stochastic differential equations," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 413-424.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:366:y:2020:i:c:s0096300319307258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.