IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v354y2019icp460-477.html
   My bibliography  Save this article

Linear multistep methods for optimal control problems and applications to hyperbolic relaxation systems

Author

Listed:
  • Albi, G.
  • Herty, M.
  • Pareschi, L.

Abstract

We are interested in high-order linear multistep schemes for time discretization of adjoint equations arising within optimal control problems. First we consider optimal control problems for ordinary differential equations and show loss of accuracy for Adams–Moulton and Adams–Bashforth methods, whereas BDF methods preserve high-order accuracy. Subsequently we extend these results to semi-Lagrangian discretizations of hyperbolic relaxation systems. Computational results illustrate theoretical findings.

Suggested Citation

  • Albi, G. & Herty, M. & Pareschi, L., 2019. "Linear multistep methods for optimal control problems and applications to hyperbolic relaxation systems," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 460-477.
  • Handle: RePEc:eee:apmaco:v:354:y:2019:i:c:p:460-477
    DOI: 10.1016/j.amc.2019.02.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300319301195
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2019.02.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Elisabetta Carlini & Adriano Festa & Francisco J. Silva & Marie-Therese Wolfram, 2017. "A Semi-Lagrangian Scheme for a Modified Version of the Hughes’ Model for Pedestrian Flow," Dynamic Games and Applications, Springer, vol. 7(4), pages 683-705, December.
    2. Alina Chertock & Michael Herty & Alexander Kurganov, 2014. "An Eulerian–Lagrangian method for optimization problems governed by multidimensional nonlinear hyperbolic PDEs," Computational Optimization and Applications, Springer, vol. 59(3), pages 689-724, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jens Lang & Bernhard A. Schmitt, 2024. "Implicit Peer Triplets in Gradient-Based Solution Algorithms for ODE Constrained Optimal Control," Journal of Optimization Theory and Applications, Springer, vol. 203(1), pages 985-1026, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Frenzel & Jens Lang, 2021. "A third-order weighted essentially non-oscillatory scheme in optimal control problems governed by nonlinear hyperbolic conservation laws," Computational Optimization and Applications, Springer, vol. 80(1), pages 301-320, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:354:y:2019:i:c:p:460-477. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.