IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v480y2024ics0096300324003631.html
   My bibliography  Save this article

A high order accurate space-time trajectory reconstruction technique for quantitative particle trafficking analysis

Author

Listed:
  • Corradi, Eloina
  • Tavelli, Maurizio
  • Baudet, Marie-Laure
  • Boscheri, Walter

Abstract

The study of moving particles (e.g. molecules, virus, vesicles, organelles, or whole cells) is crucial to decipher a plethora of cellular mechanisms within physiological and pathological conditions. Powerful live-imaging approaches enable life scientists to capture particle movements at different scale from cells to single molecules, that are collected in a series of frames. However, although these events can be captured, an accurate quantitative analysis of live-imaging experiments still remains a challenge. Two main approaches are currently used to study particle kinematics: kymographs, which are graphical representation of spatial motion over time, and single particle tracking (SPT) followed by linear linking. Both kymograph and SPT apply a space-time approximation in quantifying particle kinematics, considering the velocity constant either over several frames or between consecutive frames, respectively. Thus, both approaches intrinsically limit the analysis of complex motions with rapid changes in velocity. Therefore, we design, implement and validate a novel reconstruction algorithm aiming at supporting tracking particle trafficking analysis with mathematical foundations. Our method is based on polynomial reconstruction of 4D (3D+time) particle trajectories, enabling to assess particle instantaneous velocity and acceleration, at any time, over the entire trajectory. Here, the new algorithm is compared to state-of-the-art SPT followed by linear linking, demonstrating an increased accuracy in quantifying particle kinematics. Our approach is directly derived from the governing equations of motion, thus it arises from physical principles and, as such, it is a versatile and reliable numerical method for accurate particle kinematics analysis which can be applied to any live-imaging experiment where the space-time coordinates can be retrieved.

Suggested Citation

  • Corradi, Eloina & Tavelli, Maurizio & Baudet, Marie-Laure & Boscheri, Walter, 2024. "A high order accurate space-time trajectory reconstruction technique for quantitative particle trafficking analysis," Applied Mathematics and Computation, Elsevier, vol. 480(C).
  • Handle: RePEc:eee:apmaco:v:480:y:2024:i:c:s0096300324003631
    DOI: 10.1016/j.amc.2024.128902
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300324003631
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2024.128902?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Albi, G. & Herty, M. & Pareschi, L., 2019. "Linear multistep methods for optimal control problems and applications to hyperbolic relaxation systems," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 460-477.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jens Lang & Bernhard A. Schmitt, 2024. "Implicit Peer Triplets in Gradient-Based Solution Algorithms for ODE Constrained Optimal Control," Journal of Optimization Theory and Applications, Springer, vol. 203(1), pages 985-1026, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:480:y:2024:i:c:s0096300324003631. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.