IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v340y2019icp72-83.html
   My bibliography  Save this article

Strong convergence of compensated split-step theta methods for SDEs with jumps under monotone condition

Author

Listed:
  • Yue, Chao

Abstract

This paper is concerned with strong convergence of the compensated split-step theta (CSST) method for autonomous stochastic differential equations (SDEs) with jumps under weaker conditions. More precisely, the diffusion coefficient and the drift coefficient are both locally Lipschitz and the jump-diffusion coefficient is globally Lipschitz, while they all satisfy the monotone condition. It is proved that the CSST method is strongly convergent of order 12. Finally, the obtained results are supported by numerical experiments.

Suggested Citation

  • Yue, Chao, 2019. "Strong convergence of compensated split-step theta methods for SDEs with jumps under monotone condition," Applied Mathematics and Computation, Elsevier, vol. 340(C), pages 72-83.
  • Handle: RePEc:eee:apmaco:v:340:y:2019:i:c:p:72-83
    DOI: 10.1016/j.amc.2018.04.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300318303060
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.04.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. G. Kou, 2002. "A Jump-Diffusion Model for Option Pricing," Management Science, INFORMS, vol. 48(8), pages 1086-1101, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Min & Huang, Chengming & Chen, Ziheng, 2021. "Compensated projected Euler-Maruyama method for stochastic differential equations with superlinear jumps," Applied Mathematics and Computation, Elsevier, vol. 393(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chendi Ni & Yuying Li & Peter A. Forsyth, 2023. "Neural Network Approach to Portfolio Optimization with Leverage Constraints:a Case Study on High Inflation Investment," Papers 2304.05297, arXiv.org, revised May 2023.
    2. Karl Friedrich Mina & Gerald H. L. Cheang & Carl Chiarella, 2015. "Approximate Hedging Of Options Under Jump-Diffusion Processes," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(04), pages 1-26.
    3. Marcelo G. Figueroa, 2006. "Pricing Multiple Interruptible-Swing Contracts," Birkbeck Working Papers in Economics and Finance 0606, Birkbeck, Department of Economics, Mathematics & Statistics.
    4. Ciprian Necula & Gabriel Drimus & Walter Farkas, 2019. "A general closed form option pricing formula," Review of Derivatives Research, Springer, vol. 22(1), pages 1-40, April.
    5. Yongxin Yang & Yu Zheng & Timothy M. Hospedales, 2016. "Gated Neural Networks for Option Pricing: Rationality by Design," Papers 1609.07472, arXiv.org, revised Mar 2020.
    6. Zhang, Jian-Xun & Hu, Chang-Hua & He, Xiao & Si, Xiao-Sheng & Liu, Yang & Zhou, Dong-Hua, 2017. "Lifetime prognostics for deteriorating systems with time-varying random jumps," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 338-350.
    7. Giesecke, K. & Schwenkler, G., 2019. "Simulated likelihood estimators for discretely observed jump–diffusions," Journal of Econometrics, Elsevier, vol. 213(2), pages 297-320.
    8. Louis Paulot & Xavier Lacroze, 2009. "One-Dimensional Pricing of CPPI," Papers 0905.2926, arXiv.org, revised Feb 2010.
    9. Yang, Zhaoqiang, 2020. "Default probability of American lookback option in a mixed jump-diffusion model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    10. Li, Chenxu & Chen, Dachuan, 2016. "Estimating jump–diffusions using closed-form likelihood expansions," Journal of Econometrics, Elsevier, vol. 195(1), pages 51-70.
    11. Gapeev, Pavel V., 2006. "On maximal inequalities for some jump processes," SFB 649 Discussion Papers 2006-060, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    12. Leippold, Markus & Vasiljević, Nikola, 2017. "Pricing and disentanglement of American puts in the hyper-exponential jump-diffusion model," Journal of Banking & Finance, Elsevier, vol. 77(C), pages 78-94.
    13. Maekawa, Koichi & Lee, Sangyeol & Morimoto, Takayuki & Kawai, Ken-ichi, 2008. "Jump diffusion model with application to the Japanese stock market," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 78(2), pages 223-236.
    14. N. Hilber & N. Reich & C. Schwab & C. Winter, 2009. "Numerical methods for Lévy processes," Finance and Stochastics, Springer, vol. 13(4), pages 471-500, September.
    15. Kirkby, J. Lars & Nguyen, Duy, 2021. "Equity-linked Guaranteed Minimum Death Benefits with dollar cost averaging," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 408-428.
    16. Chang-Yi Li & Son-Nan Chen & Shih-Kuei Lin, 2016. "Pricing derivatives with modeling CO emission allowance using a regime-switching jump diffusion model: with regime-switching risk premium," The European Journal of Finance, Taylor & Francis Journals, vol. 22(10), pages 887-908, August.
    17. Chinonso I. Nwankwo & Weizhong Dai & Ruihua Liu, 2023. "Compact Finite Difference Scheme with Hermite Interpolation for Pricing American Put Options Based on Regime Switching Model," Computational Economics, Springer;Society for Computational Economics, vol. 62(3), pages 817-854, October.
    18. Jean-David Fermanian, 2020. "On the Dependence between Default Risk and Recovery Rates in Structural Models," Annals of Economics and Statistics, GENES, issue 140, pages 45-82.
    19. Nacira Agram & Bernt Øksendal & Jan Rems, 2024. "Deep learning for quadratic hedging in incomplete jump market," Digital Finance, Springer, vol. 6(3), pages 463-499, September.
    20. Kontosakos, Vasileios E. & Mendonca, Keegan & Pantelous, Athanasios A. & Zuev, Konstantin M., 2021. "Pricing discretely-monitored double barrier options with small probabilities of execution," European Journal of Operational Research, Elsevier, vol. 290(1), pages 313-330.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:340:y:2019:i:c:p:72-83. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.