IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v102y2017icp354-360.html
   My bibliography  Save this article

An integro quadratic spline approach for a class of variable-order fractional initial value problems

Author

Listed:
  • Moghaddam, B.P.
  • Machado, J.A.T.
  • Behforooz, H.

Abstract

This paper develops a technique for the approximate solution of a class of variable-order fractional differential equations useful in the area of fluid dynamics. The method adopts a piecewise integro quadratic spline interpolation and is used in the study of the variable-order fractional Bagley–Torvik and Basset equations. The accuracy of the proposed algorithm is verified by means of illustrative examples.

Suggested Citation

  • Moghaddam, B.P. & Machado, J.A.T. & Behforooz, H., 2017. "An integro quadratic spline approach for a class of variable-order fractional initial value problems," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 354-360.
  • Handle: RePEc:eee:chsofr:v:102:y:2017:i:c:p:354-360
    DOI: 10.1016/j.chaos.2017.03.065
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077917301212
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2017.03.065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arikoglu, Aytac & Ozkol, Ibrahim, 2007. "Solution of fractional differential equations by using differential transform method," Chaos, Solitons & Fractals, Elsevier, vol. 34(5), pages 1473-1481.
    2. Karaaslan, Mehmet Fatih & Celiker, Fatih & Kurulay, Muhammet, 2016. "Approximate solution of the Bagley–Torvik equation by hybridizable discontinuous Galerkin methods," Applied Mathematics and Computation, Elsevier, vol. 285(C), pages 51-58.
    3. West, Bruce J., 2015. "Exact solution to fractional logistic equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 429(C), pages 103-108.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuqin Zhang & Lei Hu, 2019. "Unique Existence Result of Approximate Solution to Initial Value Problem for Fractional Differential Equation of Variable Order Involving the Derivative Arguments on the Half-Axis," Mathematics, MDPI, vol. 7(3), pages 1-23, March.
    2. Dumitru Baleanu & Amin Jajarmi & Mojtaba Hajipour, 2017. "A New Formulation of the Fractional Optimal Control Problems Involving Mittag–Leffler Nonsingular Kernel," Journal of Optimization Theory and Applications, Springer, vol. 175(3), pages 718-737, December.
    3. Zeid, Samaneh Soradi, 2019. "Approximation methods for solving fractional equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 171-193.
    4. Sarita Gajbhiye Meshram & Vijay P. Singh & Ozgur Kisi & Chandrashekhar Meshram, 2021. "Soil erosion modeling of watershed using cubic, quadratic and quintic splines," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(3), pages 2701-2719, September.
    5. Soradi-Zeid, Samaneh & Jahanshahi, Hadi & Yousefpour, Amin & Bekiros, Stelios, 2020. "King algorithm: A novel optimization approach based on variable-order fractional calculus with application in chaotic financial systems," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahmoud, Gamal M. & Arafa, Ayman A. & Abed-Elhameed, Tarek M. & Mahmoud, Emad E., 2017. "Chaos control of integer and fractional orders of chaotic Burke–Shaw system using time delayed feedback control," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 680-692.
    2. Eriqat, Tareq & El-Ajou, Ahmad & Oqielat, Moa'ath N. & Al-Zhour, Zeyad & Momani, Shaher, 2020. "A New Attractive Analytic Approach for Solutions of Linear and Nonlinear Neutral Fractional Pantograph Equations," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    3. Hari Mohan Srivastava & Khaled M. Saad, 2020. "A Comparative Study of the Fractional-Order Clock Chemical Model," Mathematics, MDPI, vol. 8(9), pages 1-14, August.
    4. Damarla, Seshu Kumar & Kundu, Madhusree, 2015. "Numerical solution of multi-order fractional differential equations using generalized triangular function operational matrices," Applied Mathematics and Computation, Elsevier, vol. 263(C), pages 189-203.
    5. Vasily E. Tarasov, 2019. "Rules for Fractional-Dynamic Generalizations: Difficulties of Constructing Fractional Dynamic Models," Mathematics, MDPI, vol. 7(6), pages 1-50, June.
    6. Valentina V. Tarasova & Vasily E. Tarasov, 2017. "Logistic map with memory from economic model," Papers 1712.09092, arXiv.org.
    7. Salah Abuasad & Ahmet Yildirim & Ishak Hashim & Samsul Ariffin Abdul Karim & J.F. Gómez-Aguilar, 2019. "Fractional Multi-Step Differential Transformed Method for Approximating a Fractional Stochastic SIS Epidemic Model with Imperfect Vaccination," IJERPH, MDPI, vol. 16(6), pages 1-15, March.
    8. Skwara, Urszula & Mozyrska, Dorota & Aguiar, Maira & Stollenwerk, Nico, 2024. "Dynamics of vector-borne diseases through the lens of systems incorporating fractional-order derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    9. Tuan Hoang, Manh & Nagy, A.M., 2019. "Uniform asymptotic stability of a Logistic model with feedback control of fractional order and nonstandard finite difference schemes," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 24-34.
    10. Turalska, Malgorzata & West, Bruce J., 2017. "A search for a spectral technique to solve nonlinear fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 387-395.
    11. Khudair, Ayad R. & Haddad, S.A.M. & khalaf, Sanaa L., 2017. "Restricted fractional differential transform for solving irrational order fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 101(C), pages 81-85.
    12. Yang, Xiao-Jun & Tenreiro Machado, J.A. & Srivastava, H.M., 2016. "A new numerical technique for solving the local fractional diffusion equation: Two-dimensional extended differential transform approach," Applied Mathematics and Computation, Elsevier, vol. 274(C), pages 143-151.
    13. Kumar, Manoj & Daftardar-Gejji, Varsha, 2019. "A new family of predictor-corrector methods for solving fractional differential equations," Applied Mathematics and Computation, Elsevier, vol. 363(C), pages 1-1.
    14. Kavyanpoor, Mobin & Shokrollahi, Saeed, 2017. "Challenge on solutions of fractional Van Der Pol oscillator by using the differential transform method," Chaos, Solitons & Fractals, Elsevier, vol. 98(C), pages 44-45.
    15. Area, I. & Nieto, J.J., 2021. "Power series solution of the fractional logistic equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    16. Allahviranloo, T. & Gouyandeh, Z. & Armand, A., 2015. "Numerical solutions for fractional differential equations by Tau-Collocation method," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 979-990.
    17. Yu, Jianping & Jing, Jian & Sun, Yongli & Wu, Suping, 2016. "(n+1)-Dimensional reduced differential transform method for solving partial differential equations," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 697-705.
    18. Zhao, Jingjun & Zhao, Wenjiao & Xu, Yang, 2023. "Hybridizable discontinuous Galerkin methods for space-time fractional advection-dispersion equations," Applied Mathematics and Computation, Elsevier, vol. 442(C).
    19. Ortigueira, Manuel & Bengochea, Gabriel, 2017. "A new look at the fractionalization of the logistic equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 554-561.
    20. Vasily E. Tarasov, 2020. "Exact Solutions of Bernoulli and Logistic Fractional Differential Equations with Power Law Coefficients," Mathematics, MDPI, vol. 8(12), pages 1-11, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:102:y:2017:i:c:p:354-360. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.