IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v324y2018icp285-294.html
   My bibliography  Save this article

Saddlepoint approximation to the distribution of the total distance of the von Mises–Fisher continuous time random walk

Author

Listed:
  • Gatto, R.

Abstract

This article considers the random walk over Rp, with any p ≥ 2, where a particle starts at the origin and progresses stepwise with fixed step lengths and von Mises–Fisher distributed step directions. The total number of steps follows a continuous time counting process. The saddlepoint approximation to the distribution of the distance between the origin and the position of the particle at any time is derived. Despite the p-dimensionality of the random walk, the computation of the proposed saddlepoint approximation is one-dimensional and thus simple. The high accuracy of the saddlepoint approximation is illustrated by a numerical comparison with Monte Carlo simulation.

Suggested Citation

  • Gatto, R., 2018. "Saddlepoint approximation to the distribution of the total distance of the von Mises–Fisher continuous time random walk," Applied Mathematics and Computation, Elsevier, vol. 324(C), pages 285-294.
  • Handle: RePEc:eee:apmaco:v:324:y:2018:i:c:p:285-294
    DOI: 10.1016/j.amc.2017.12.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300317308895
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2017.12.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Riccardo Gatto, 2017. "Saddlepoint approximation to the distribution of the total distance of the continuous time random walk," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 90(12), pages 1-13, December.
    2. Riccardo Gatto, 2017. "Large Deviations Approximations to Distributions of the Total Distance of Compound Random Walks with von Mises Directions," Methodology and Computing in Applied Probability, Springer, vol. 19(3), pages 843-864, September.
    3. Ryszard Kutner & Jaume Masoliver, 2017. "The continuous time random walk, still trendy: fifty-year history, state of art and outlook," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 90(3), pages 1-13, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paekivi, Sander & Mankin, Romi, 2019. "Bimodality of the interspike interval distributions for subordinated diffusion models of integrate-and-fire neurons," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    2. Arkashov, N.S., 2022. "On the model of random walk with multiple memory structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    3. Aleksejus Kononovicius & Vygintas Gontis, 2019. "Approximation of the first passage time distribution for the birth-death processes," Papers 1902.00924, arXiv.org.
    4. Michelitsch, Thomas M. & Riascos, Alejandro P., 2020. "Continuous time random walk and diffusion with generalized fractional Poisson process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    5. Ponta, Linda & Trinh, Mailan & Raberto, Marco & Scalas, Enrico & Cincotti, Silvano, 2019. "Modeling non-stationarities in high-frequency financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 173-196.
    6. Jewgeni H. Dshalalow & Ryan T. White, 2021. "Current Trends in Random Walks on Random Lattices," Mathematics, MDPI, vol. 9(10), pages 1-38, May.
    7. Angeli, Letizia & Grosskinsky, Stefan & Johansen, Adam M., 2021. "Limit theorems for cloning algorithms," Stochastic Processes and their Applications, Elsevier, vol. 138(C), pages 117-152.
    8. Michelitsch, Thomas M. & Polito, Federico & Riascos, Alejandro P., 2021. "On discrete time Prabhakar-generalized fractional Poisson processes and related stochastic dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    9. Danish A Ahmed & Ali R Ansari & Mudassar Imran & Kamal Dingle & Michael B Bonsall, 2021. "Mechanistic modelling of COVID-19 and the impact of lockdowns on a short-time scale," PLOS ONE, Public Library of Science, vol. 16(10), pages 1-20, October.
    10. Jaume Masoliver & Miquel Montero & Josep Perelló, 2021. "Jump-Diffusion Models for Valuing the Future: Discounting under Extreme Situations," Mathematics, MDPI, vol. 9(14), pages 1-26, July.
    11. Rytis Kazakevicius & Aleksejus Kononovicius & Bronislovas Kaulakys & Vygintas Gontis, 2021. "Understanding the nature of the long-range memory phenomenon in socioeconomic systems," Papers 2108.02506, arXiv.org, revised Aug 2021.
    12. Jaros{l}aw Klamut & Tomasz Gubiec, 2018. "Directed Continuous-Time Random Walk with memory," Papers 1807.01934, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:324:y:2018:i:c:p:285-294. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.