IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v320y2018icp61-74.html
   My bibliography  Save this article

On the application of the method of fundamental solutions to boundary value problems with jump discontinuities

Author

Listed:
  • Alves, Carlos J.S.
  • Valtchev, Svilen S.

Abstract

Two meshfree methods are proposed for the numerical solution of boundary value problems (BVPs) for the Laplace equation, coupled with boundary conditions with jump discontinuities. In the first case, the BVP is solved in two steps, using a subtraction of singularity approach. Here, the singular subproblem is solved analytically while the classical method of fundamental solutions (MFS) is applied for the solution of the regular subproblem. In the second case, the total BVP is solved using a variant of the MFS where its approximation basis is enriched with a set of harmonic functions with singular traces on the boundary of the domain. The same singularity-capturing functions, motivated by the boundary element method (BEM), are used for the singular part of the solution in the first method and for augmenting the MFS basis in the second method. Comparative numerical results are presented for 2D problems with discontinuous Dirichlet boundary conditions. In particular, the inappropriate oscillatory behavior of the classical MFS solution, due to the Gibbs phenomenon, is shown to vanish.

Suggested Citation

  • Alves, Carlos J.S. & Valtchev, Svilen S., 2018. "On the application of the method of fundamental solutions to boundary value problems with jump discontinuities," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 61-74.
  • Handle: RePEc:eee:apmaco:v:320:y:2018:i:c:p:61-74
    DOI: 10.1016/j.amc.2017.09.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300317306392
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2017.09.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. ,, 1998. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 14(5), pages 687-698, October.
    2. ,, 2003. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 19(4), pages 691-705, August.
    3. ,, 2003. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 19(1), pages 225-228, February.
    4. ,, 2003. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 19(5), pages 879-883, October.
    5. ,, 1998. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 14(3), pages 381-386, June.
    6. ,, 1998. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 14(4), pages 525-537, August.
    7. ,, 1998. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 14(2), pages 285-292, April.
    8. ,, 2003. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 19(2), pages 411-413, April.
    9. ,, 1998. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 14(1), pages 151-159, February.
    10. ,, 2003. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 19(6), pages 1195-1198, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xi, Qiang & Fu, Zhuojia & Wu, Wenjie & Wang, Hui & Wang, Yong, 2021. "A novel localized collocation solver based on Trefftz basis for potential-based inverse electromyography," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    2. Yao Sun & Xiaoliang Wei & Zibo Zhuang & Tian Luan, 2019. "A Numerical Method for Filtering the Noise in the Heat Conduction Problem," Mathematics, MDPI, vol. 7(6), pages 1-13, June.
    3. Yao Sun & Shijie Hao, 2021. "A Numerical Study for the Dirichlet Problem of the Helmholtz Equation," Mathematics, MDPI, vol. 9(16), pages 1-12, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marc Peeters & Zeger Degraeve, 2004. "The Co-Printing Problem: A Packing Problem with a Color Constraint," Operations Research, INFORMS, vol. 52(4), pages 623-638, August.
    2. Chein-Shan Liu & Zhuojia Fu & Chung-Lun Kuo, 2017. "Directional Method of Fundamental Solutions for Three-dimensional Laplace Equation," Journal of Mathematics Research, Canadian Center of Science and Education, vol. 9(6), pages 112-123, December.
    3. Kazuhiro Takimoto, 2021. "Precise blowup rate near the boundary of boundary blowup solutions to k-Hessian equation," Partial Differential Equations and Applications, Springer, vol. 2(1), pages 1-10, February.
    4. Albizuri, M.J. & Leroux, J. & Zarzuelo, J.M., 2010. "Updating claims in bankruptcy problems," Mathematical Social Sciences, Elsevier, vol. 60(2), pages 144-148, September.
    5. Mingue SUn, 2010. "A Branch-and-Bound Algorithm for Representative Integer Efficient Solutions in Multiple Objective Network Programming Problems," Working Papers 0007, College of Business, University of Texas at San Antonio.
    6. Hamacher, Horst W. & Pedersen, Christian Roed & Ruzika, Stefan, 2007. "Multiple objective minimum cost flow problems: A review," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1404-1422, February.
    7. Amit K. Verma & Biswajit Pandit & Lajja Verma & Ravi P. Agarwal, 2020. "A Review on a Class of Second Order Nonlinear Singular BVPs," Mathematics, MDPI, vol. 8(7), pages 1-50, June.
    8. Marin, Liviu & Cipu, Corina, 2017. "Non-iterative regularized MFS solution of inverse boundary value problems in linear elasticity: A numerical study," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 265-286.
    9. Hovik A. Matevossian, 2020. "Asymptotics and Uniqueness of Solutions of the Elasticity System with the Mixed Dirichlet–Robin Boundary Conditions," Mathematics, MDPI, vol. 8(12), pages 1-32, December.
    10. Dolf Talman & Zaifu Yang, 2012. "On a Parameterized System of Nonlinear Equations with Economic Applications," Journal of Optimization Theory and Applications, Springer, vol. 154(2), pages 644-671, August.
    11. Yakut, Oguz, 2021. "Implementation of hydraulically driven barrel shooting control by utilizing artificial neural networks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 1206-1223.
    12. X. Qin & G. Huang, 2009. "An Inexact Chance-constrained Quadratic Programming Model for Stream Water Quality Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(4), pages 661-695, March.
    13. Md. Yousuf Gazi & Khandakar Tahmida Tafhim, 2019. "Investigation of Heavy-mineral Deposits Using Multispectral Satellite Imagery in the Eastern Coastal Margin of Bangladesh," Earth Sciences Malaysia (ESMY), Zibeline International Publishing, vol. 3(2), pages 16-22, October.
    14. Zhiqiang Zheng & Balaji Padmanabhan & Steven O. Kimbrough, 2003. "On the Existence and Significance of Data Preprocessing Biases in Web-Usage Mining," INFORMS Journal on Computing, INFORMS, vol. 15(2), pages 148-170, May.
    15. Billionnet, Alain, 2011. "Solving the probabilistic reserve selection problem," Ecological Modelling, Elsevier, vol. 222(3), pages 546-554.
    16. Herings, P.J.J. & Talman, A.J.J. & Yang, Z.F., 1999. "Variational Inequality Problems With a Continuum of Solutions : Existence and Computation," Other publications TiSEM 73e2f01b-ad4d-4447-95ba-a, Tilburg University, School of Economics and Management.
    17. Carlos R. Handy & Daniel Vrinceanu & Carl B. Marth & Harold A. Brooks, 2015. "Pointwise Reconstruction of Wave Functions from Their Moments through Weighted Polynomial Expansions: An Alternative Global-Local Quantization Procedure," Mathematics, MDPI, vol. 3(4), pages 1-24, November.
    18. Allen C. Goodman & Miron Stano, 2000. "Hmos and Health Externalities: A Local Public Good Perspective," Public Finance Review, , vol. 28(3), pages 247-269, May.
    19. Bode, Sven & Michaelowa, Axel, 2003. "Avoiding perverse effects of baseline and investment additionality determination in the case of renewable energy projects," Energy Policy, Elsevier, vol. 31(6), pages 505-517, May.
    20. Ala, Guido & Fasshauer, Gregory E. & Francomano, Elisa & Ganci, Salvatore & McCourt, Michael J., 2017. "An augmented MFS approach for brain activity reconstruction," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 141(C), pages 3-15.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:320:y:2018:i:c:p:61-74. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.