IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v7y2019i6p502-d236557.html
   My bibliography  Save this article

A Numerical Method for Filtering the Noise in the Heat Conduction Problem

Author

Listed:
  • Yao Sun

    (College of Science, Civil Aviation University of China, Tianjin 300300, China)

  • Xiaoliang Wei

    (College of Science, Civil Aviation University of China, Tianjin 300300, China)

  • Zibo Zhuang

    (Flight Technology College, Civil Aviation University of China, Tianjin 300300, China)

  • Tian Luan

    (School of Mathematics and Statics, Beihua University, Jilin 132013, China)

Abstract

In this paper, we give an effective numerical method for the heat conduction problem connected with the Laplace equation. Through the use of a single-layer potential approach to the solution, we get the boundary integral equation about the density function. In order to deal with the weakly singular kernel of the integral equation, we give the projection method to deal with this part, i.e., using the Lagrange trigonometric polynomials basis to give an approximation of the density function. Although the problems under investigation are well-posed, herein the Tikhonov regularization method is not used to regularize the aforementioned direct problem with noisy data, but to filter out the noise in the corresponding perturbed data. Finally, the effectiveness of the proposed method is demonstrated using a few examples, including a boundary condition with a jump discontinuity and a boundary condition with a corner. Whilst a comparative study with the method of fundamental solutions (MFS) is also given.

Suggested Citation

  • Yao Sun & Xiaoliang Wei & Zibo Zhuang & Tian Luan, 2019. "A Numerical Method for Filtering the Noise in the Heat Conduction Problem," Mathematics, MDPI, vol. 7(6), pages 1-13, June.
  • Handle: RePEc:gam:jmathe:v:7:y:2019:i:6:p:502-:d:236557
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/7/6/502/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/7/6/502/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alves, Carlos J.S. & Valtchev, Svilen S., 2018. "On the application of the method of fundamental solutions to boundary value problems with jump discontinuities," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 61-74.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yao Sun & Shijie Hao, 2021. "A Numerical Study for the Dirichlet Problem of the Helmholtz Equation," Mathematics, MDPI, vol. 9(16), pages 1-12, August.
    2. Xi, Qiang & Fu, Zhuojia & Wu, Wenjie & Wang, Hui & Wang, Yong, 2021. "A novel localized collocation solver based on Trefftz basis for potential-based inverse electromyography," Applied Mathematics and Computation, Elsevier, vol. 390(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:6:p:502-:d:236557. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.