IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v320y2018icp149-157.html
   My bibliography  Save this article

Novel Lyapunov–Krasovskii functional with delay-dependent matrix for stability of time-varying delay systems

Author

Listed:
  • Kwon, W.
  • Koo, Baeyoung
  • Lee, S.M.

Abstract

This paper investigates the stability criteria of time-varying delay systems with known bounds of the delay and its derivative. To obtain a tighter bound of integral term, quadratic generalized free-weighting matrix inequality (QGFMI) is proposed. Furthermore, a novel augmented Lyapunov–Krasovskii functional (LKF) are constructed with a delay-dependent matrix, which impose the information for a bound of delay derivative. Relaxed stability condition using QGFMI and LKF provides a larger delay bound with low computational burden. The superiority of the proposed stability condition is verified by comparing to recent results.

Suggested Citation

  • Kwon, W. & Koo, Baeyoung & Lee, S.M., 2018. "Novel Lyapunov–Krasovskii functional with delay-dependent matrix for stability of time-varying delay systems," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 149-157.
  • Handle: RePEc:eee:apmaco:v:320:y:2018:i:c:p:149-157
    DOI: 10.1016/j.amc.2017.09.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300317306641
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2017.09.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gyurkovics, É. & Szabó-Varga, G. & Kiss, K., 2017. "Stability analysis of linear systems with interval time-varying delays utilizing multiple integral inequalities," Applied Mathematics and Computation, Elsevier, vol. 311(C), pages 164-177.
    2. Zhang, Chuan-Ke & He, Yong & Jiang, Lin & Lin, Wen-Juan & Wu, Min, 2017. "Delay-dependent stability analysis of neural networks with time-varying delay: A generalized free-weighting-matrix approach," Applied Mathematics and Computation, Elsevier, vol. 294(C), pages 102-120.
    3. Wang, Zhanshan & Ding, Sanbo & Zhang, Huaguang, 2017. "Hierarchy of stability criterion for time-delay systems based on multiple integral approach," Applied Mathematics and Computation, Elsevier, vol. 314(C), pages 422-428.
    4. Liu, Xin-Ge & Wu, Min & Martin, Ralph & Tang, Mei-Lan, 2007. "Delay-dependent stability analysis for uncertain neutral systems with time-varying delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 75(1), pages 15-27.
    5. Bao, Haibo & Park, Ju H. & Cao, Jinde, 2015. "Matrix measure strategies for exponential synchronization and anti-synchronization of memristor-based neural networks with time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 543-556.
    6. Hien, Le Van & Trinh, Hieu, 2016. "Exponential stability of time-delay systems via new weighted integral inequalities," Applied Mathematics and Computation, Elsevier, vol. 275(C), pages 335-344.
    7. Tang, Ze & Park, Ju H. & Lee, Tae H., 2016. "Dynamic output-feedback-based H∞ design for networked control systems with multipath packet dropouts," Applied Mathematics and Computation, Elsevier, vol. 275(C), pages 121-133.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kwon, W. & Jin, Yongsik & Lee, S.M., 2020. "PI-type event-triggered H∞ filter for networked T-S fuzzy systems using affine matched membership function approach," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    2. Zeng, Hong-Bing & Liu, Xiao-Gui & Wang, Wei, 2019. "A generalized free-matrix-based integral inequality for stability analysis of time-varying delay systems," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 1-8.
    3. Long, Fei & Jiang, Lin & He, Yong & Wu, Min, 2019. "Stability analysis of systems with time-varying delay via novel augmented Lyapunov–Krasovskii functionals and an improved integral inequality," Applied Mathematics and Computation, Elsevier, vol. 357(C), pages 325-337.
    4. Wenyong Duan & Yan Li & Jian Chen & Lin Jiang, 2019. "New Results on Stability Analysis of Uncertain Neutral-Type Lur’e Systems Derived from a Modified Lyapunov-Krasovskii Functional," Complexity, Hindawi, vol. 2019, pages 1-20, April.
    5. Wang, Yingchun & Zhang, Jiaxin & Zhang, Huaguang & Xie, Xiangpeng, 2021. "Finite-time adaptive neural control for nonstrict-feedback stochastic nonlinear systems with input delay and output constraints," Applied Mathematics and Computation, Elsevier, vol. 393(C).
    6. Chen, Jun & Park, Ju H., 2020. "New versions of Bessel–Legendre inequality and their applications to systems with time-varying delay," Applied Mathematics and Computation, Elsevier, vol. 375(C).
    7. Pan, X.Z. & Huang, J.J. & Lee, S.M., 2023. "A novel convex relaxation technique on affine transformed sampled-data control issue for fuzzy semi-Markov jump systems," Applied Mathematics and Computation, Elsevier, vol. 451(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Jun & Park, Ju H., 2020. "New versions of Bessel–Legendre inequality and their applications to systems with time-varying delay," Applied Mathematics and Computation, Elsevier, vol. 375(C).
    2. Zhang, Zhi-Ming & He, Yong & Wu, Min & Wang, Qing-Guo, 2017. "Exponential synchronization of chaotic neural networks with time-varying delay via intermittent output feedback approach," Applied Mathematics and Computation, Elsevier, vol. 314(C), pages 121-132.
    3. Wang, Zhanshan & Ding, Sanbo & Zhang, Huaguang, 2017. "Hierarchy of stability criterion for time-delay systems based on multiple integral approach," Applied Mathematics and Computation, Elsevier, vol. 314(C), pages 422-428.
    4. Zhai, Shidong & Zhou, Yuan & Li, Qingdu, 2017. "Synchronization for coupled nonlinear systems with disturbances in input and measured output," Applied Mathematics and Computation, Elsevier, vol. 294(C), pages 227-237.
    5. Li, Xiaoqing & She, Kun & Zhong, Shouming & Shi, Kaibo & Kang, Wei & Cheng, Jun & Yu, Yongbin, 2018. "Extended robust global exponential stability for uncertain switched memristor-based neural networks with time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 271-290.
    6. Gyurkovics, É. & Szabó-Varga, G. & Kiss, K., 2017. "Stability analysis of linear systems with interval time-varying delays utilizing multiple integral inequalities," Applied Mathematics and Computation, Elsevier, vol. 311(C), pages 164-177.
    7. Sun, Yonghui & Li, Ning & Shen, Mouquan & Wei, Zhinong & Sun, Guoqiang, 2018. "Robust H∞ control of uncertain linear system with interval time-varying delays by using Wirtinger inequality," Applied Mathematics and Computation, Elsevier, vol. 335(C), pages 1-11.
    8. de Oliveira, Fúlvia S.S. & Souza, Fernando O., 2020. "Further refinements in stability conditions for time-varying delay systems," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    9. Long, Fei & Jiang, Lin & He, Yong & Wu, Min, 2019. "Stability analysis of systems with time-varying delay via novel augmented Lyapunov–Krasovskii functionals and an improved integral inequality," Applied Mathematics and Computation, Elsevier, vol. 357(C), pages 325-337.
    10. Zhou, Jiamu & Dong, Hailing & Feng, Jianwen, 2017. "Event-triggered communication for synchronization of Markovian jump delayed complex networks with partially unknown transition rates," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 617-629.
    11. Qi, Xingnan & Bao, Haibo & Cao, Jinde, 2019. "Exponential input-to-state stability of quaternion-valued neural networks with time delay," Applied Mathematics and Computation, Elsevier, vol. 358(C), pages 382-393.
    12. Jiang, Tingting & Zhang, Yuping & Zeng, Yong & Zhong, Shouming & Shi, Kaibo & Cai, Xiao, 2021. "Finite-time analysis for networked predictive control systems with induced time delays and data packet dropouts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    13. Luo, Jinnan & Tian, Wenhong & Zhong, Shouming & Shi, Kaibo & Chen, Hao & Gu, Xian-Ming & Wang, Wenqin, 2017. "Non-fragile asynchronous H∞ control for uncertain stochastic memory systems with Bernoulli distribution," Applied Mathematics and Computation, Elsevier, vol. 312(C), pages 109-128.
    14. Huang, Chengdai & Cao, Jinde & Xiao, Min & Alsaedi, Ahmed & Hayat, Tasawar, 2017. "Bifurcations in a delayed fractional complex-valued neural network," Applied Mathematics and Computation, Elsevier, vol. 292(C), pages 210-227.
    15. Tu, Zhengwen & Zhao, Yongxiang & Ding, Nan & Feng, Yuming & Zhang, Wei, 2019. "Stability analysis of quaternion-valued neural networks with both discrete and distributed delays," Applied Mathematics and Computation, Elsevier, vol. 343(C), pages 342-353.
    16. Fu, Lei & Ma, Yuechao, 2016. "Passive control for singular time-delay system with actuator saturation," Applied Mathematics and Computation, Elsevier, vol. 289(C), pages 181-193.
    17. Lee, Tae H. & Park, Myeong Jin & Park, Ju H., 2021. "An improved stability criterion of neural networks with time-varying delays in the form of quadratic function using novel geometry-based conditions," Applied Mathematics and Computation, Elsevier, vol. 404(C).
    18. Song, Jia-Sheng & Chang, Xiao-Heng, 2020. "H∞ controller design of networked control systems with a new quantization structure," Applied Mathematics and Computation, Elsevier, vol. 376(C).
    19. Qiu, Fang & Cui, Baotong & Ji, Yan, 2009. "Novel robust stability analysis for uncertain neutral system with mixed delays," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1820-1828.
    20. Su, Haipeng & Luo, Runzi & Huang, Meichun & Fu, Jiaojiao, 2022. "Practical fixed time active control scheme for synchronization of a class of chaotic neural systems with external disturbances," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:320:y:2018:i:c:p:149-157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.