IDEAS home Printed from https://ideas.repec.org/a/hin/complx/1706264.html
   My bibliography  Save this article

New Results on Stability Analysis of Uncertain Neutral-Type Lur’e Systems Derived from a Modified Lyapunov-Krasovskii Functional

Author

Listed:
  • Wenyong Duan
  • Yan Li
  • Jian Chen
  • Lin Jiang

Abstract

This paper is concerned with the problem of the absolute and robustly absolute stability for the uncertain neutral-type Lur’e system with time-varying delays. By introducing a modified Lyapunov-Krasovskii functional (LKF) related to a delay-product-type function and two delay-dependent matrices, some new delay-dependent robustly absolute stability criteria are proposed, which can be expressed as convex linear matrix inequality (LMI) framework. The criteria proposed in this paper are less conservative than some recent previous ones. Finally, some numerical examples are presented to show the effectiveness of the proposed approach.

Suggested Citation

  • Wenyong Duan & Yan Li & Jian Chen & Lin Jiang, 2019. "New Results on Stability Analysis of Uncertain Neutral-Type Lur’e Systems Derived from a Modified Lyapunov-Krasovskii Functional," Complexity, Hindawi, vol. 2019, pages 1-20, April.
  • Handle: RePEc:hin:complx:1706264
    DOI: 10.1155/2019/1706264
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/1706264.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/1706264.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/1706264?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wenyong Duan & Baozhu Du & Jing You & Yun Zou, 2015. "Improved robust stability criteria for a class of Lur'e systems with interval time-varying delays and sector-bounded nonlinearity," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(5), pages 944-954, April.
    2. Kwon, W. & Koo, Baeyoung & Lee, S.M., 2018. "Novel Lyapunov–Krasovskii functional with delay-dependent matrix for stability of time-varying delay systems," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 149-157.
    3. Lee, Seok Young & Lee, Won Il & Park, PooGyeon, 2017. "Improved stability criteria for linear systems with interval time-varying delays: Generalized zero equalities approach," Applied Mathematics and Computation, Elsevier, vol. 292(C), pages 336-348.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeng, Hong-Bing & Liu, Xiao-Gui & Wang, Wei, 2019. "A generalized free-matrix-based integral inequality for stability analysis of time-varying delay systems," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 1-8.
    2. Long, Fei & Jiang, Lin & He, Yong & Wu, Min, 2019. "Stability analysis of systems with time-varying delay via novel augmented Lyapunov–Krasovskii functionals and an improved integral inequality," Applied Mathematics and Computation, Elsevier, vol. 357(C), pages 325-337.
    3. Chen, Jun & Park, Ju H., 2020. "New versions of Bessel–Legendre inequality and their applications to systems with time-varying delay," Applied Mathematics and Computation, Elsevier, vol. 375(C).
    4. Kwon, W. & Jin, Yongsik & Lee, S.M., 2020. "PI-type event-triggered H∞ filter for networked T-S fuzzy systems using affine matched membership function approach," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    5. Kwon, O.M. & Lee, S.H. & Park, M.J. & Lee, S.M., 2020. "Augmented zero equality approach to stability for linear systems with time-varying delay," Applied Mathematics and Computation, Elsevier, vol. 381(C).
    6. Shi, Kaibo & Liu, Xinzhi & Zhu, Hong & Zhong, Shouming & Zeng, Yong & Yin, Chun, 2016. "Novel delay-dependent master-slave synchronization criteria of chaotic Lur’e systems with time-varying-delay feedback control," Applied Mathematics and Computation, Elsevier, vol. 282(C), pages 137-154.
    7. de Oliveira, Fúlvia S.S. & Souza, Fernando O., 2020. "Further refinements in stability conditions for time-varying delay systems," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    8. Wei Wang & Jinming Liang & Mihan Liu & Liming Ding & Hongbing Zeng, 2024. "Novel Robust Stability Criteria for Lur’e Systems with Time-Varying Delay," Mathematics, MDPI, vol. 12(4), pages 1-12, February.
    9. Wang, Yingchun & Zhang, Jiaxin & Zhang, Huaguang & Xie, Xiangpeng, 2021. "Finite-time adaptive neural control for nonstrict-feedback stochastic nonlinear systems with input delay and output constraints," Applied Mathematics and Computation, Elsevier, vol. 393(C).
    10. Lee, S.H. & Park, M.J. & Kwon, O.M. & Choi, S.G., 2022. "Less conservative stability criteria for general neural networks through novel delay-dependent functional," Applied Mathematics and Computation, Elsevier, vol. 420(C).
    11. Pan, X.Z. & Huang, J.J. & Lee, S.M., 2023. "A novel convex relaxation technique on affine transformed sampled-data control issue for fuzzy semi-Markov jump systems," Applied Mathematics and Computation, Elsevier, vol. 451(C).
    12. Xiong, Lianglin & Cheng, Jun & Cao, Jinde & Liu, Zixin, 2018. "Novel inequality with application to improve the stability criterion for dynamical systems with two additive time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 672-688.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:1706264. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.