IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v276y2016icp394-406.html
   My bibliography  Save this article

A class of efficient quadrature-based predictor–corrector methods for solving nonlinear systems

Author

Listed:
  • Howk, Cory L.

Abstract

We extend a class of quadrature-based predictor–corrector techniques for root-finding to multivariate systems. They are found to have a rate of convergence of 1+2 regardless of the degree of precision for the quadrature technique from which they are derived, provided it is at least one. By reusing the linear system from the previous iterate, this class incorporates a significant improvement in computational time relative to the standard class through the inclusion of an LU-decomposition during the iteration. Complexity is equivalent to Newton’s Method, as they only require knowledge of F(x) and F′(x).

Suggested Citation

  • Howk, Cory L., 2016. "A class of efficient quadrature-based predictor–corrector methods for solving nonlinear systems," Applied Mathematics and Computation, Elsevier, vol. 276(C), pages 394-406.
  • Handle: RePEc:eee:apmaco:v:276:y:2016:i:c:p:394-406
    DOI: 10.1016/j.amc.2015.12.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300315300205
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.12.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Howk, Cory L., 2015. "Convergence of a class of efficient quadrature-based predictor–corrector methods for root-finding," Applied Mathematics and Computation, Elsevier, vol. 252(C), pages 189-200.
    2. Ullah, Malik Zaka & Serra-Capizzano, Stefano & Ahmad, Fayyaz, 2015. "An efficient multi-step iterative method for computing the numerical solution of systems of nonlinear equations associated with ODEs," Applied Mathematics and Computation, Elsevier, vol. 250(C), pages 249-259.
    3. Ullah, Malik Zaka & Serra-Capizzano, S. & Ahmad, Fayyaz & Al-Aidarous, Eman S., 2015. "Higher order multi-step iterative method for computing the numerical solution of systems of nonlinear equations: Application to nonlinear PDEs and ODEs," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 972-987.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fayyaz Ahmad & Shafiq Ur Rehman & Malik Zaka Ullah & Hani Moaiteq Aljahdali & Shahid Ahmad & Ali Saleh Alshomrani & Juan A. Carrasco & Shamshad Ahmad & Sivanandam Sivasankaran, 2017. "Frozen Jacobian Multistep Iterative Method for Solving Nonlinear IVPs and BVPs," Complexity, Hindawi, vol. 2017, pages 1-30, May.
    2. R. H. Al-Obaidi & M. T. Darvishi, 2022. "Constructing a Class of Frozen Jacobian Multi-Step Iterative Solvers for Systems of Nonlinear Equations," Mathematics, MDPI, vol. 10(16), pages 1-13, August.
    3. Chein-Shan Liu & Essam R. El-Zahar & Chih-Wen Chang, 2024. "Optimal Combination of the Splitting–Linearizing Method to SSOR and SAOR for Solving the System of Nonlinear Equations," Mathematics, MDPI, vol. 12(12), pages 1-24, June.
    4. Ahmad, F. & Soleymani, F. & Khaksar Haghani, F. & Serra-Capizzano, S., 2017. "Higher order derivative-free iterative methods with and without memory for systems of nonlinear equations," Applied Mathematics and Computation, Elsevier, vol. 314(C), pages 199-211.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:276:y:2016:i:c:p:394-406. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.