IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v265y2015icp785-798.html
   My bibliography  Save this article

Global stability of a multi-group SIS epidemic model with varying total population size

Author

Listed:
  • Kuniya, Toshikazu
  • Muroya, Yoshiaki

Abstract

In this paper, to analyze the effect of the cross patch infection between different groups to the spread of gonorrhea in a community, we establish the complete global dynamics of a multi-group SIS epidemic model with varying total population size by a threshold parameter. In the proof, we use special Lyapunov functional techniques, not only one proposed by the paper [Prüss et al., 2006], but also the other one for a varying total population size with some ideas specified to our model and no longer need a grouping technique derived from the graph theory which is commonly used for the global stability analysis of multi-group epidemic models.

Suggested Citation

  • Kuniya, Toshikazu & Muroya, Yoshiaki, 2015. "Global stability of a multi-group SIS epidemic model with varying total population size," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 785-798.
  • Handle: RePEc:eee:apmaco:v:265:y:2015:i:c:p:785-798
    DOI: 10.1016/j.amc.2015.05.124
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300315007559
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.05.124?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Junli & Zhou, Yicang, 2009. "Global stability of an SIRS epidemic model with transport-related infection," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 145-158.
    2. Vargas-De-León, Cruz, 2011. "On the global stability of SIS, SIR and SIRS epidemic models with standard incidence," Chaos, Solitons & Fractals, Elsevier, vol. 44(12), pages 1106-1110.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Halet Ismail & Amar Debbouche & Soundararajan Hariharan & Lingeshwaran Shangerganesh & Stanislava V. Kashtanova, 2024. "Stability and Optimality Criteria for an SVIR Epidemic Model with Numerical Simulation," Mathematics, MDPI, vol. 12(20), pages 1-29, October.
    2. Zhang, Zizhen & Kundu, Soumen & Tripathi, Jai Prakash & Bugalia, Sarita, 2020. "Stability and Hopf bifurcation analysis of an SVEIR epidemic model with vaccination and multiple time delays," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gupta, R.P. & Kumar, Arun, 2022. "Endemic bubble and multiple cusps generated by saturated treatment of an SIR model through Hopf and Bogdanov–Takens bifurcations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 197(C), pages 1-21.
    2. Talal Daghriri & Michael Proctor & Sarah Matthews, 2022. "Evolution of Select Epidemiological Modeling and the Rise of Population Sentiment Analysis: A Literature Review and COVID-19 Sentiment Illustration," IJERPH, MDPI, vol. 19(6), pages 1-20, March.
    3. Alkhazzan, Abdulwasea & Wang, Jungang & Nie, Yufeng & Khan, Hasib & Alzabut, Jehad, 2023. "An effective transport-related SVIR stochastic epidemic model with media coverage and Lévy noise," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    4. Tipsri, S. & Chinviriyasit, W., 2015. "The effect of time delay on the dynamics of an SEIR model with nonlinear incidence," Chaos, Solitons & Fractals, Elsevier, vol. 75(C), pages 153-172.
    5. Parsamanesh, Mahmood & Erfanian, Majid, 2018. "Global dynamics of an epidemic model with standard incidence rate and vaccination strategy," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 192-199.
    6. Yin, Qian & Wang, Zhishuang & Xia, Chengyi & Dehmer, Matthias & Emmert-Streib, Frank & Jin, Zhen, 2020. "A novel epidemic model considering demographics and intercity commuting on complex dynamical networks," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    7. Zhao, Zhen-jun & Liu, Yong-mei & Wang, Ke-xi, 2016. "An analysis of rumor propagation based on propagation force," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 263-271.
    8. Ren, Jianguo & Yang, Xiaofan & Yang, Lu-Xing & Xu, Yonghong & Yang, Fanzhou, 2012. "A delayed computer virus propagation model and its dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 45(1), pages 74-79.
    9. Wu, Yucui & Zhang, Zhipeng & Song, Limei & Xia, Chengyi, 2024. "Global stability analysis of two strains epidemic model with imperfect vaccination and immunity waning in a complex network," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    10. Juhui Yan & Wanqin Wu & Qing Miao & Xuewen Tan, 2024. "Global Dynamics and Optimal Control of a Fractional-Order SIV Epidemic Model with Nonmonotonic Occurrence Rate," Mathematics, MDPI, vol. 12(17), pages 1-21, September.
    11. Nudee, K. & Chinviriyasit, S. & Chinviriyasit, W., 2019. "The effect of backward bifurcation in controlling measles transmission by vaccination," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 400-412.
    12. Greenhalgh, D. & Liang, Y. & Mao, X., 2016. "Modelling the effect of telegraph noise in the SIRS epidemic model using Markovian switching," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 684-704.
    13. Zhe Yin & Yongguang Yu & Zhenzhen Lu, 2020. "Stability Analysis of an Age-Structured SEIRS Model with Time Delay," Mathematics, MDPI, vol. 8(3), pages 1-17, March.
    14. Chenquan Gan & Xiaofan Yang & Wanping Liu & Qingyi Zhu & Xulong Zhang, 2012. "Propagation of Computer Virus under Human Intervention: A Dynamical Model," Discrete Dynamics in Nature and Society, Hindawi, vol. 2012, pages 1-8, July.
    15. Xu, Rui & Ma, Zhien, 2009. "Stability of a delayed SIRS epidemic model with a nonlinear incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2319-2325.
    16. Naim, Mouhcine & Lahmidi, Fouad & Namir, Abdelwahed & Kouidere, Abdelfatah, 2021. "Dynamics of an fractional SEIR epidemic model with infectivity in latent period and general nonlinear incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    17. Sharmin Sultana & Gilberto González-Parra & Abraham J. Arenas, 2023. "Analysis of Within-Host Mathematical Models of Toxoplasmosis That Consider Time Delays," Mathematics, MDPI, vol. 11(21), pages 1-24, October.
    18. Jana, Soovoojeet & Haldar, Palash & Kar, T.K., 2016. "Optimal control and stability analysis of an epidemic model with population dispersal," Chaos, Solitons & Fractals, Elsevier, vol. 83(C), pages 67-81.
    19. AlShamrani, N.H. & Elaiw, A.M. & Batarfi, H. & Hobiny, A.D. & Dutta, H., 2020. "Global stability analysis of a general nonlinear scabies dynamics model," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    20. Wang, Jinliang & Wang, Jing & Kuniya, Toshikazu, 2019. "Analysis of an age-structured multi-group heroin epidemic model," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 78-100.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:265:y:2015:i:c:p:785-798. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.