IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v252y2015icp496-502.html
   My bibliography  Save this article

A branch-and-bound method for the single-machine scheduling problem under a non-availability constraint for maximum delivery time minimization

Author

Listed:
  • Hfaiedh, Walid
  • Sadfi, Chérif
  • Kacem, Imed
  • Hadj-Alouane, Atidel

Abstract

We consider the single machine scheduling problem with release dates and tails, provided that the machine is unavailable during a fixed interval. We aim to minimize the maximum delivery time under the nonresumable senario. This problem is strongly NP-hard. The proposed algorithm is based on a branch-and-bound method. We use Jackson’s preemptive algorithm with precedence constraints to compute the lower bound and Schrage’s sequence as an upper bound. Numerical experiments show that the algorithm can solve large-size instances with up to 1000 jobs.

Suggested Citation

  • Hfaiedh, Walid & Sadfi, Chérif & Kacem, Imed & Hadj-Alouane, Atidel, 2015. "A branch-and-bound method for the single-machine scheduling problem under a non-availability constraint for maximum delivery time minimization," Applied Mathematics and Computation, Elsevier, vol. 252(C), pages 496-502.
  • Handle: RePEc:eee:apmaco:v:252:y:2015:i:c:p:496-502
    DOI: 10.1016/j.amc.2014.11.103
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300314016361
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2014.11.103?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Schmidt, Gunter, 2000. "Scheduling with limited machine availability," European Journal of Operational Research, Elsevier, vol. 121(1), pages 1-15, February.
    2. Carlier, Jacques, 1982. "The one-machine sequencing problem," European Journal of Operational Research, Elsevier, vol. 11(1), pages 42-47, September.
    3. Imed Kacem, 2009. "Approximation algorithms for the makespan minimization with positive tails on a single machine with a fixed non-availability interval," Journal of Combinatorial Optimization, Springer, vol. 17(2), pages 117-133, February.
    4. C. N. Potts, 1980. "Technical Note—Analysis of a Heuristic for One Machine Sequencing with Release Dates and Delivery Times," Operations Research, INFORMS, vol. 28(6), pages 1436-1441, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Imed Kacem, 2009. "Approximation algorithms for the makespan minimization with positive tails on a single machine with a fixed non-availability interval," Journal of Combinatorial Optimization, Springer, vol. 17(2), pages 117-133, February.
    2. Imed Kacem & Hans Kellerer & Maryam Seifaddini, 2016. "Efficient approximation schemes for the maximum lateness minimization on a single machine with a fixed operator or machine non-availability interval," Journal of Combinatorial Optimization, Springer, vol. 32(3), pages 970-981, October.
    3. Wenda Zhang & Jason J. Sauppe & Sheldon H. Jacobson, 2021. "An Improved Branch-and-Bound Algorithm for the One-Machine Scheduling Problem with Delayed Precedence Constraints," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1091-1102, July.
    4. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
    5. Shabtay, Dvir, 2022. "Single-machine scheduling with machine unavailability periods and resource dependent processing times," European Journal of Operational Research, Elsevier, vol. 296(2), pages 423-439.
    6. Zhong, Xueling & Ou, Jinwen & Wang, Guoqing, 2014. "Order acceptance and scheduling with machine availability constraints," European Journal of Operational Research, Elsevier, vol. 232(3), pages 435-441.
    7. Ji Tian & Yan Zhou & Ruyan Fu, 2020. "An improved semi-online algorithm for scheduling on a single machine with unexpected breakdown," Journal of Combinatorial Optimization, Springer, vol. 40(1), pages 170-180, July.
    8. Shabtay, Dvir & Zofi, Moshe, 2018. "Single machine scheduling with controllable processing times and an unavailability period to minimize the makespan," International Journal of Production Economics, Elsevier, vol. 198(C), pages 191-200.
    9. Federico Alonso-Pecina & José Alberto Hernández & José Maria Sigarreta & Nodari Vakhania, 2020. "Fast Approximation for Scheduling One Machine," Mathematics, MDPI, vol. 8(9), pages 1-18, September.
    10. Schmidt, Gunter, 2000. "Performance guarantee of two simple priority rules for production scheduling," International Journal of Production Economics, Elsevier, vol. 68(2), pages 151-159, November.
    11. Lili Zuo & Zhenxia Sun & Lingfa Lu & Liqi Zhang, 2019. "Single-Machine Scheduling with Rejection and an Operator Non-Availability Interval," Mathematics, MDPI, vol. 7(8), pages 1-8, July.
    12. Ren-Xia Chen & Shi-Sheng Li, 2020. "Minimizing maximum delivery completion time for order scheduling with rejection," Journal of Combinatorial Optimization, Springer, vol. 40(4), pages 1044-1064, November.
    13. Detienne, Boris, 2014. "A mixed integer linear programming approach to minimize the number of late jobs with and without machine availability constraints," European Journal of Operational Research, Elsevier, vol. 235(3), pages 540-552.
    14. Peihai Liu & Xiwen Lu, 2015. "Online scheduling on two parallel machines with release dates and delivery times," Journal of Combinatorial Optimization, Springer, vol. 30(2), pages 347-359, August.
    15. Egon Balas & Alkis Vazacopoulos, 1998. "Guided Local Search with Shifting Bottleneck for Job Shop Scheduling," Management Science, INFORMS, vol. 44(2), pages 262-275, February.
    16. Philip Kaminsky, 2003. "The effectiveness of the longest delivery time rule for the flow shop delivery time problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 50(3), pages 257-272, April.
    17. Joao António Noivo & Helena Ramalhinho-Lourenço, 1998. "Solving two production scheduling problems with sequence-dependent set-up times," Economics Working Papers 338, Department of Economics and Business, Universitat Pompeu Fabra.
    18. Koulamas, Christos & Kyparisis, George J., 2023. "A classification of dynamic programming formulations for offline deterministic single-machine scheduling problems," European Journal of Operational Research, Elsevier, vol. 305(3), pages 999-1017.
    19. Liang-Liang Fu & Mohamed Ali Aloulou & Christian Artigues, 2018. "Integrated production and outbound distribution scheduling problems with job release dates and deadlines," Journal of Scheduling, Springer, vol. 21(4), pages 443-460, August.
    20. Blazewicz, Jacek & Domschke, Wolfgang & Pesch, Erwin, 1996. "The job shop scheduling problem: Conventional and new solution techniques," European Journal of Operational Research, Elsevier, vol. 93(1), pages 1-33, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:252:y:2015:i:c:p:496-502. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.