IDEAS home Printed from https://ideas.repec.org/p/ags/aaea15/205719.html
   My bibliography  Save this paper

Impacts of Water Scarcity and Climate on Land Use for Irrigated Agriculture in the U.S. West Coast

Author

Listed:
  • Olen, Beau
  • Wu, JunJie

Abstract

In this article, we use the most comprehensive data on irrigated agricultural production in the United States – the USDA Farm and Ranch Irrigation Survey (FRIS) – to assess the effects of water scarcity and climate on land use decisions for producers of specialty crops, wheat, and forage crops. The data is used to estimate a land use decision model for major crops in the West Coast (California, Oregon and Washington), which includes a farm-level equation of harvested acres and crop-specific equations of harvested acres (orchard/vineyard, vegetable, wheat, alfalfa, hay, and pasture). The analysis leads to several interesting findings, some of which have been identified previously in the literature and others which are novel. First, producers harvest fewer acres in response to deeper well depths. Producers’ response to well depth is driven by a reduction in land allocated to pasture. Second, producers that receive surface water from a federal agency or that use surface water only have lower average water costs and allocate more land to pasture than other crops. Third, producers harvest more land if irrigation is used to mitigate frost damage to orchards and vineyards. Fourth, producers respond to drought by increasing land allocation to orchards and vineyards and reducing land allocation to alfalfa and hay.

Suggested Citation

  • Olen, Beau & Wu, JunJie, 2015. "Impacts of Water Scarcity and Climate on Land Use for Irrigated Agriculture in the U.S. West Coast," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205719, Agricultural and Applied Economics Association.
  • Handle: RePEc:ags:aaea15:205719
    DOI: 10.22004/ag.econ.205719
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/205719/files/Land%20Use%20in%20the%20WC%20_Olen%20and%20Wu_.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.205719?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Adam Smith & Richard Katz, 2013. "US billion-dollar weather and climate disasters: data sources, trends, accuracy and biases," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(2), pages 387-410, June.
    2. Liu, Hai-Jun & Kang, Yaohu, 2006. "Effect of sprinkler irrigation on microclimate in the winter wheat field in the North China Plain," Agricultural Water Management, Elsevier, vol. 84(1-2), pages 3-19, July.
    3. Sylvester, Kenneth M., 2009. "Ecological Frontiers on the Grasslands of Kansas: Changes in Farm Scale and Crop Diversity," The Journal of Economic History, Cambridge University Press, vol. 69(4), pages 1041-1062, December.
    4. Margriet F. Caswell & David Zilberman, 1986. "The Effects of Well Depth and Land Quality on the Choice of Irrigation Technology," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 68(4), pages 798-811.
    5. Wallis, K.J. & Candela, L. & Mateos, R.M. & Tamoh, K., 2011. "Simulation of nitrate leaching under potato crops in a Mediterranean area. Influence of frost prevention irrigation on nitrogen transport," Agricultural Water Management, Elsevier, vol. 98(10), pages 1629-1640, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rebecca Taylor & David Zilberman, 2017. "Diffusion of Drip Irrigation: The Case of California," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 39(1), pages 16-40.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olen, Beau & Wu, JunJie & Langpap, Christian, 2012. "Crop-specific Irrigation Choices for Major Crops on the West Coast: Water Scarcity and Climatic Determinants," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 124843, Agricultural and Applied Economics Association.
    2. Chatterjee, Diti & Dinar, Ariel & González-Rivera, Gloria, 2019. "Impact of Agricultural Extension on Irrigated Agriculture Production and Water Use in California," Journal of the ASFMRA, American Society of Farm Managers and Rural Appraisers, vol. 2019.
    3. Boyer, Christopher N. & Larson, James A. & Roberts, Roland K. & McClure, Angela T. & Tyler, Donald D., 2014. "The impact of field size and energy cost on the profitability of supplemental corn irrigation," Agricultural Systems, Elsevier, vol. 127(C), pages 61-69.
    4. Alain Ayong Le Kama & Agnès Tomini, 2012. "Water Conservation versus Soil Salinity Control," Working Papers hal-04141151, HAL.
    5. Khanna, Madhu & Zilberman, David, 1997. "Incentives, precision technology and environmental protection," Ecological Economics, Elsevier, vol. 23(1), pages 25-43, October.
    6. Fishman, Ram & Giné, Xavier & Jacoby, Hanan G., 2023. "Efficient irrigation and water conservation: Evidence from South India," Journal of Development Economics, Elsevier, vol. 162(C).
    7. Amine Ouazad & Matthew E Kahn, 2022. "Mortgage Finance and Climate Change: Securitization Dynamics in the Aftermath of Natural Disasters," The Review of Financial Studies, Society for Financial Studies, vol. 35(8), pages 3617-3665.
    8. Uri Shani & Yacov Tsur & Amos Zemel & David Zilberman, 2009. "Irrigation production functions with water‐capital substitution," Agricultural Economics, International Association of Agricultural Economists, vol. 40(1), pages 55-66, January.
    9. Bourdeau-Brien, Michael & Kryzanowski, Lawrence, 2017. "The impact of natural disasters on the stock returns and volatilities of local firms," The Quarterly Review of Economics and Finance, Elsevier, vol. 63(C), pages 259-270.
    10. Liu, Zhipeng & Jiao, Xiyun & Zhu, Chengli & Katul, Gabriel G. & Ma, Junyong & Guo, Weihua, 2021. "Micro-climatic and crop responses to micro-sprinkler irrigation," Agricultural Water Management, Elsevier, vol. 243(C).
    11. Hyunwoo Kang & Venkataramana Sridhar, 2018. "Improved Drought Prediction Using Near Real-Time Climate Forecasts and Simulated Hydrologic Conditions," Sustainability, MDPI, vol. 10(6), pages 1-29, May.
    12. Louis Sears & Joseph Caparelli & Clouse Lee & Devon Pan & Gillian Strandberg & Linh Vuu & C. -Y. Cynthia Lin Lawell, 2018. "Jevons’ Paradox and Efficient Irrigation Technology," Sustainability, MDPI, vol. 10(5), pages 1-12, May.
    13. Xiaopei Tang & Haijun Liu & Li Yang & Lun Li & Jie Chang, 2022. "Energy Balance, Microclimate, and Crop Evapotranspiration of Winter Wheat ( Triticum aestivum L.) under Sprinkler Irrigation," Agriculture, MDPI, vol. 12(7), pages 1-23, June.
    14. Zhang, Biao & Fu, Zetian & Wang, Jieqiong & Zhang, Lingxian, 2019. "Farmers’ adoption of water-saving irrigation technology alleviates water scarcity in metropolis suburbs: A case study of Beijing, China," Agricultural Water Management, Elsevier, vol. 212(C), pages 349-357.
    15. Jenni Dinger & Michael Conger & David Hekman & Carla Bustamante, 2020. "Somebody That I Used to Know: The Immediate and Long-Term Effects of Social Identity in Post-disaster Business Communities," Journal of Business Ethics, Springer, vol. 166(1), pages 115-141, September.
    16. Nicolas E. Quintana Ashwell & Jeffrey M. Peterson, 2016. "The Impact of Irrigation Capital Subsidies on Common-Pool Groundwater Use and Depletion: Results for Western Kansas," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(03), pages 1-22, September.
    17. Pielke, Roger Jr, 2024. "Scientific Integrity and U.S. “Billion Dollar Disasters”," SocArXiv 3yf7b, Center for Open Science.
    18. Yongxiang Zhang & Hongli Wang & Xuemei Shao & Jinbao Li & Guoyu Ren, 2022. "Extreme drought events diagnosed along the Yellow River and the adjacent area," Climatic Change, Springer, vol. 173(3), pages 1-16, August.
    19. Koundouri, Phoebe & Nauges, Céline & Tzouvelekas, Vangelis, 2009. "The Effect of Production Uncertainty and Information Dissemination of the Diffusion of Irrigation Technologies," TSE Working Papers 09-032, Toulouse School of Economics (TSE).
    20. Khanna, Madhu, 2021. "Digital Transformation for a Sustainable Agriculture: Opportunities and Challenges," 2021 Conference, August 17-31, 2021, Virtual 315052, International Association of Agricultural Economists.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea15:205719. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.