IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v97y2010i5p596-604.html
   My bibliography  Save this article

Comparative evaluation of phosphorus losses from subsurface and naturally drained agricultural fields in the Pike River watershed of Quebec, Canada

Author

Listed:
  • Eastman, M.
  • Gollamudi, A.
  • Stämpfli, N.
  • Madramootoo, C.A.
  • Sarangi, A.

Abstract

Phosphorus (P) is the limiting nutrient responsible for the development of algal blooms in freshwater bodies, adversely impacting the water quality of downstream lakes and rivers. Since agriculture is a major non-point source of P in southern Quebec, this study was carried out to investigate P transport under subsurface and naturally drained agricultural fields with two common soil types (clay loam and sandy loam). Monitoring stations were installed at four sites (A, B, C and D) in the Pike River watershed of southern Quebec. Sites A-B had subsurface drainage whereas sites C-D were naturally drained. In addition, sites A-C had clay loam soils whereas sites B-D had sandy loam soils. Analysis of data acquired over two hydrologic years (2004-2006) revealed that site A discharged 1.8 times more water than site B, 4 times more than site C and 3 times more than site D. The presence of subsurface drainage in sandy loam soils had a significant beneficial effect in minimizing surface runoff and total phosphorus (TP) losses from the field, but the contrary was observed in clay loam soils. This was attributed to the finding that P speciation as particulate phosphorus (PP) and dissolved phosphorus (DP) remained relatively independent of the hydrologic transport pathway, and was a strong function of soil texture. While 80% of TP occurred as PP at both clay loam sites, only 20% occurred as PP at both sandy loam sites. Moreover, P transport pathways in artificially drained soils were greatly influenced by the prevailing preferential and macropore flow conditions.

Suggested Citation

  • Eastman, M. & Gollamudi, A. & Stämpfli, N. & Madramootoo, C.A. & Sarangi, A., 2010. "Comparative evaluation of phosphorus losses from subsurface and naturally drained agricultural fields in the Pike River watershed of Quebec, Canada," Agricultural Water Management, Elsevier, vol. 97(5), pages 596-604, May.
  • Handle: RePEc:eee:agiwat:v:97:y:2010:i:5:p:596-604
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(09)00340-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ball Coelho, B. & Murray, R. & Lapen, D. & Topp, E. & Bruin, A., 2012. "Phosphorus and sediment loading to surface waters from liquid swine manure application under different drainage and tillage practices," Agricultural Water Management, Elsevier, vol. 104(C), pages 51-61.
    2. Lozier, T.M. & Macrae, M.L. & Brunke, R. & Van Eerd, L.L., 2017. "Release of phosphorus from crop residue and cover crops over the non-growing season in a cool temperate region," Agricultural Water Management, Elsevier, vol. 189(C), pages 39-51.
    3. Ramesh P. Rudra & Balew A. Mekonnen & Rituraj Shukla & Narayan Kumar Shrestha & Pradeep K. Goel & Prasad Daggupati & Asim Biswas, 2020. "Currents Status, Challenges, and Future Directions in Identifying Critical Source Areas for Non-Point Source Pollution in Canadian Conditions," Agriculture, MDPI, vol. 10(10), pages 1-25, October.
    4. Ball Coelho, B. & Lapen, D. & Murray, R. & Topp, E. & Bruin, A. & Khan, B., 2012. "Nitrogen loading to offsite waters from liquid swine manure application under different drainage and tillage practices," Agricultural Water Management, Elsevier, vol. 104(C), pages 40-50.
    5. Häggblom, Olle & Salo, Heidi & Turunen, Mika & Nurminen, Jyrki & Alakukku, Laura & Myllys, Merja & Koivusalo, Harri, 2019. "Impacts of supplementary drainage on the water balance of a poorly drained agricultural field," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    6. Hertzberger, A. & Pittelkow, C.M. & Harmel, R.D. & Christianson, L.E., 2019. "The MANAGE Drain Concentration database: A new tool compiling North American drainage nutrient concentrations," Agricultural Water Management, Elsevier, vol. 216(C), pages 113-117.
    7. Askar, Manal H & Youssef, Mohamed A & Chescheir, George M & Negm, Lamyaa M & King, Kevin W & Hesterberg, Dean L & Amoozegar, Aziz & Skaggs, R. Wayne, 2020. "DRAINMOD Simulation of macropore flow at subsurface drained agricultural fields: Model modification and field testing," Agricultural Water Management, Elsevier, vol. 242(C).
    8. Nazari, Saeid & Ford, William I. & King, Kevin W., 2022. "Impact of flow pathway and source water connectivity on subsurface sediment and particulate phosphorus dynamics in tile-drained agroecosystems," Agricultural Water Management, Elsevier, vol. 269(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:97:y:2010:i:5:p:596-604. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.