IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v97y2010i10p1541-1552.html
   My bibliography  Save this article

Land use and land cover classification in the irrigated Indus Basin using growth phenology information from satellite data to support water management analysis

Author

Listed:
  • Cheema, M.J.M.
  • Bastiaanssen, W.G.M.

Abstract

Water resources planning and management is fundamental for food security, environmental conservation, economic development and livelihoods. In complex basins like the Indus Basin, water is utilized by different land cover and land uses. Up to date information about these Land Use and Land Cover (LULC) classes provide essential information on the water flow path. Traditionally, landscapes are described by cover type. For water management analysis, the information on land use is vital. To this end, a classification of LULC in the Indus Basin (covering 116.2 million hectares of Pakistan, India, China and Afghanistan) has been made. Vegetation index images freely available from SPOT-Vegetation satellite were used to describe the phenological cycle of all agro-ecosystems at a spatial resolution of 1 km x 1 km. An unsupervised clustering technique was adapted to classify 27 land use classes. Ground information and expert knowledge on the growing patterns of crops was used to label the resulting LULC classes. This helped to discern specific crops and crop rotations. An error matrix was prepared using ground truthing data to evaluate the classification accuracy. Existing global, regional and local studies were also considered for validation. The results show an overall accuracy of 77%, with the producer's accuracy being 78% and user's accuracy 83%. The Kappa coefficient (0.73) shows moderate agreement between on ground and satellite derived map. This is deemed sufficient for supporting water management analysis. The availability of major crop rotation statistics and types of forests and savanna is key information for the input data in hydrological models and water accounting frameworks.

Suggested Citation

  • Cheema, M.J.M. & Bastiaanssen, W.G.M., 2010. "Land use and land cover classification in the irrigated Indus Basin using growth phenology information from satellite data to support water management analysis," Agricultural Water Management, Elsevier, vol. 97(10), pages 1541-1552, October.
  • Handle: RePEc:eee:agiwat:v:97:y:2010:i:10:p:1541-1552
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(10)00171-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Molden, D., 1997. "Accounting for water use and productivity," IWMI Books, Reports H021374, International Water Management Institute.
    2. Graham Turner & Timothy Baynes & Bertram McInnis, 2010. "A Water Accounting System for Strategic Water Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(3), pages 513-545, February.
    3. Molden, David J., 1997. "Accounting for water use and productivity," IWMI Books, International Water Management Institute, number 113623.
    4. Bastiaanssen, W. G. M., 1998. "Remote sensing in water resources management: the state of the art," IWMI Books, Reports H022865, International Water Management Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saddam Hussain & Saba Malik & Muhammad Jehanzeb Masud Cheema & Muhammad Umair Ashraf & Muhammad Mazhar Iqbal & Sikandar Ali & Lubna Anjum & Muhammad Aslam & Hassan Afzal, 2020. "An Overview On Emerging Water Scarcity Challange In Pakistan, Its Consumption, Causes, Impacts And Remedial Measures," Big Data In Water Resources Engineering (BDWRE), Zibeline International Publishing, vol. 1(1), pages 22-31, March.
    2. Muhammad Mohsin Waqas & Muhammad Waseem & Sikandar Ali & Megersa Kebede Leta & Adnan Noor Shah & Usman Khalid Awan & Syed Hamid Hussain Shah & Tao Yang & Sami Ullah, 2021. "Evaluating the Spatio-Temporal Distribution of Irrigation Water Components for Water Resources Management Using Geo-Informatics Approach," Sustainability, MDPI, vol. 13(15), pages 1-20, August.
    3. Muhammad Mohsin Khan & Muhammad Jehanzeb Masud Cheema & Talha Mahmood & Saddam Hussain & Hafiz Muhammad Nauman & Mohsin Nawaz & Muhammad Saifullah, 2020. "Crop Area Mapping By Intelligent Pixel Information Inferred Using 250m Modis Vegetation Timeseries In Transboundary Indus Basin," Big Data In Water Resources Engineering (BDWRE), Zibeline International Publishing, vol. 1(2), pages 32-35, February.
    4. Li Fu & Lanhui Zhang & Chansheng He, 2014. "Analysis of Agricultural Land Use Change in the Middle Reach of the Heihe River Basin, Northwest China," IJERPH, MDPI, vol. 11(3), pages 1-15, March.
    5. Lan Thanh Ha & Wim G. M. Bastiaanssen & Gijs W. H. Simons & Ate Poortinga, 2023. "A New Framework of 17 Hydrological Ecosystem Services (HESS17) for Supporting River Basin Planning and Environmental Monitoring," Sustainability, MDPI, vol. 15(7), pages 1-26, April.
    6. Rana Muhammad Amir & Sikandar Ali & Muhammad Jehanzeb Masud Cheema & Saddam Hussain & Muhammad Sohail Waqas & Rao Husnain Arshad & Muhammad Salam & Ahsan Raza & Muhammad Aslam, 2020. "Estimating Sediment Yield At Tarbela Dam And Flood Forecasting Through Continuous Precipitation-Runoff Modeling Of Upper Indus Basin," Big Data In Water Resources Engineering (BDWRE), Zibeline International Publishing, vol. 1(2), pages 43-48, March.
    7. Aftab Nazeer & Muhammad Mohsin Waqas & Sikandar Ali & Usman Khalid Awan & MuhammadJehanzeb Masud Cheema & Allah Baksh, 2020. "Land Use Land Cover Classification And Wheat Yield Prediction In The Lower Chenab Canal System Using Remote Sensing And Gis," Big Data In Agriculture (BDA), Zibeline International Publishing, vol. 2(2), pages 47-51, March.
    8. Yongguang Hu & Ali Raza & Neyha Rubab Syed & Siham Acharki & Ram L. Ray & Sajjad Hussain & Hossein Dehghanisanij & Muhammad Zubair & Ahmed Elbeltagi, 2023. "Land Use/Land Cover Change Detection and NDVI Estimation in Pakistan’s Southern Punjab Province," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    9. Shigeharu Sato & Bumpei Tojo & Tomonori Hoshi & Lis Izni Fanirah Minsong & Omar Kwang Kugan & Nelbon Giloi & Kamruddin Ahmed & Saffree Mohammad Jeffree & Kazuhiko Moji & Kiyoshi Kita, 2019. "Recent Incidence of Human Malaria Caused by Plasmodium knowlesi in the Villages in Kudat Peninsula, Sabah, Malaysia: Mapping of The Infection Risk Using Remote Sensing Data," IJERPH, MDPI, vol. 16(16), pages 1-10, August.
    10. Simons, G.W.H. & Bastiaanssen, W.G.M. & Cheema, M.J.M. & Ahmad, B. & Immerzeel, W.W., 2020. "A novel method to quantify consumed fractions and non-consumptive use of irrigation water: Application to the Indus Basin Irrigation System of Pakistan," Agricultural Water Management, Elsevier, vol. 236(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Alauddin & Upali A. Amarasinghe & Bharat R. Sharma, 2014. "Four decades of rice water productivity in Bangladesh: A spatio-temporal analysis of district level panel data," Economic Analysis and Policy, Elsevier, vol. 44(1), pages 51-64.
    2. Venot, Jean-Philippe & Sharma, Bharat R. & Rao, K. V. G. K., 2008. "The lower Krishna Basin trajectory: relationships between basin development and downstream environmental degradation," IWMI Research Reports H041463, International Water Management Institute.
    3. Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Su, Xiaoling & Lu, Hongna & Li, Xiaolin & Huo, Zailin & Li, Sien & Ding, Risheng, 2017. "Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice," Agricultural Water Management, Elsevier, vol. 179(C), pages 5-17.
    4. Ahmad, M.D. & Turral, H. & Nazeer, A., 2009. "Diagnosing irrigation performance and water productivity through satellite remote sensing and secondary data in a large irrigation system of Pakistan," Agricultural Water Management, Elsevier, vol. 96(4), pages 551-564, April.
    5. Ireneusz Cymes & Ewa Dragańska & Zbigniew Brodziński, 2022. "Potential Possibilities of Using Groundwater for Crop Irrigation in the Context of Climate Change," Agriculture, MDPI, vol. 12(6), pages 1-14, May.
    6. Liu, Junguo & Williams, Jimmy R. & Zehnder, Alexander J.B. & Yang, Hong, 2007. "GEPIC - modelling wheat yield and crop water productivity with high resolution on a global scale," Agricultural Systems, Elsevier, vol. 94(2), pages 478-493, May.
    7. Karam, F. & Saliba, R. & Skaf, S. & Breidy, J. & Rouphael, Y. & Balendonck, J., 2011. "Yield and water use of eggplants (Solanum melongena L.) under full and deficit irrigation regimes," Agricultural Water Management, Elsevier, vol. 98(8), pages 1307-1316, May.
    8. Bastiaanssen, W. G. M. & Chandrapala, L., 2003. "Water balance variability across Sri Lanka for assessing agricultural and environmental water use," Agricultural Water Management, Elsevier, vol. 58(2), pages 171-192, February.
    9. Zhang, Lige & Spatari, Sabrina & Sun, Ying, 2020. "Life cycle assessment of novel heat exchanger for dry cooling of power plants based on encapsulated phase change materials," Applied Energy, Elsevier, vol. 271(C).
    10. Mohamed Kharrou & Michel Le Page & Ahmed Chehbouni & Vincent Simonneaux & Salah Er-Raki & Lionel Jarlan & Lahcen Ouzine & Said Khabba & Ghani Chehbouni, 2013. "Assessment of Equity and Adequacy of Water Delivery in Irrigation Systems Using Remote Sensing-Based Indicators in Semi-Arid Region, Morocco," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(13), pages 4697-4714, October.
    11. Jeanne PERRIER, 2019. "Les lois palestiniennes de l’eau : entre centralisation, décentralisation et mise en invisibilité," Working Paper f2757814-3bd9-4fc1-970d-2, Agence française de développement.
    12. Fernández, J.E. & Alcon, F. & Diaz-Espejo, A. & Hernandez-Santana, V. & Cuevas, M.V., 2020. "Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard," Agricultural Water Management, Elsevier, vol. 237(C).
    13. Muhammad Usman & Talha Mahmood & Christopher Conrad & Habib Ullah Bodla, 2020. "Remote Sensing and Modelling Based Framework for Valuing Irrigation System Efficiency and Steering Indicators of Consumptive Water Use in an Irrigated Region," Sustainability, MDPI, vol. 12(22), pages 1-33, November.
    14. Hafeez, M.M. & Bouman, B.A.M. & Van de Giesen, N. & Vlek, P., 2007. "Scale effects on water use and water productivity in a rice-based irrigation system (UPRIIS) in the Philippines," Agricultural Water Management, Elsevier, vol. 92(1-2), pages 81-89, August.
    15. Mainuddin, M., 2010. "Water-use accounts in CPWF basins: simple water-use accounting of the Yellow River Basin," IWMI Working Papers H042849, International Water Management Institute.
    16. Vyshpolsky, F. & Mukhamedjanov, K. & Bekbaev, U. & Ibatullin, S. & Yuldashev, T. & Noble, A.D. & Mirzabaev, A. & Aw-Hassan, A. & Qadir, M., 2010. "Optimizing the rate and timing of phosphogypsum application to magnesium-affected soils for crop yield and water productivity enhancement," Agricultural Water Management, Elsevier, vol. 97(9), pages 1277-1286, September.
    17. Singh, Uttam Kumar & Ren, Li & Kang, Shaozhong, 2010. "Simulation of soil water in space and time using an agro-hydrological model and remote sensing techniques," Agricultural Water Management, Elsevier, vol. 97(8), pages 1210-1220, August.
    18. Rijsberman, Frank R., 2006. "Water scarcity: Fact or fiction?," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 5-22, February.
    19. Barros, R. & Isidoro, D. & Aragüés, R., 2011. "Long-term water balances in La Violada Irrigation District (Spain): II. Analysis of irrigation performance," Agricultural Water Management, Elsevier, vol. 98(10), pages 1569-1576, August.
    20. Amarasinghe, Upali A. & Smakhtin, Vladimir U. & Sharma, Bharat R. & Eriyagama, Nishadi, 2010. "Bailout with white revolution or sink deeper?: groundwater depletion and impacts in the Moga District of Punjab, India," IWMI Research Reports 108672, International Water Management Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:97:y:2010:i:10:p:1541-1552. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.