IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v96y2009i2p337-348.html
   My bibliography  Save this article

Water use and distribution profile under pulse and oilseed crops in semiarid northern high latitude areas

Author

Listed:
  • Gan, Y.
  • Campbell, C.A.
  • Liu, L.
  • Basnyat, P.
  • McDonald, C.L.

Abstract

Oilseed and pulse crops have been increasingly used to replace conventional summer fallow and diversify cropping systems in northern high latitude areas. The knowledge of water use (WU) and its distribution profile in the soil is essential for optimizing cropping systems aimed at improving water use efficiency (WUE). This study characterized water use and distribution profile for pulse and oilseed crops compared to spring wheat (Triticum aestivum L.) in a semiarid environment. Three oilseeds [canola (Brassica napus L.), mustard (Brassica juncea L.) and flax (Linum usitatissimum L.)], three pulses [chickpea (Cicer arietinum L.), dry pea (Pisum sativum L.) and lentil (Lens culinaris Medik.)], and spring wheat were seeded in removable 100 cm deep x 15 cm diameter lysimeters placed in an Aridic Haploboroll soil, in southwest Saskatchewan in 2006 and 2007. Crops were studied under rainfed and irrigated conditions where lysimeters were removed and sampled for plant biomass and WU at various soil depths. Wheat yields were greater than pulse crop yields which were greater than oilseed yields, and WUE averaged 4.08 kg ha-1 mm-1 for pulse crops, 3.64 kg ha-1 mm-1 for oilseeds, and ranged between 5.5 and 7.0 kg ha-1 mm-1 for wheat. Wheat used water faster than pulse and oilseed crops with crop growth. Pulse crops extracted water mostly from the upper 60 cm soil depths, and left more water unused in the profile at maturity compared to oilseeds or wheat. Among the three pulses, lentil used the least amount of water and appeared to have a shallower rooting depth than chickpea and dry pea. Soil WU and distribution profile under canola and mustard were generally similar; both using more water than flax. Differences in WU and distribution profile were similar for crops grown under rainfall and irrigation conditions. A deep rooting crop grown after pulses may receive more benefits from water conservation in the soil profile than when grown after oilseed or wheat. Alternating pulse crops with oilseeds or wheat in a well-planned crop sequence may improve WUE for the entire cropping systems in semiarid environments.

Suggested Citation

  • Gan, Y. & Campbell, C.A. & Liu, L. & Basnyat, P. & McDonald, C.L., 2009. "Water use and distribution profile under pulse and oilseed crops in semiarid northern high latitude areas," Agricultural Water Management, Elsevier, vol. 96(2), pages 337-348, February.
  • Handle: RePEc:eee:agiwat:v:96:y:2009:i:2:p:337-348
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(08)00204-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anderson, Randy L. & Tanaka, Donald L. & Merrill, Stephen D., 2003. "Yield and water use of broadleaf crops in a semiarid climate," Agricultural Water Management, Elsevier, vol. 58(3), pages 255-266, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meng, Xiangping & Lian, Yanhao & Liu, Qi & Zhang, Peng & Jia, Zhikuan & Han, Qingfang, 2020. "Optimizing the planting density under the ridge and furrow rainwater harvesting system to improve crop water productivity for foxtail millet in semiarid areas," Agricultural Water Management, Elsevier, vol. 238(C).
    2. Jing, Qi & McConkey, Brian & Qian, Budong & Smith, Ward & Grant, Brian & Shang, Jiali & Liu, Jiangui & Bindraban, Prem & Luce, Mervin St., 2021. "Assessing water management effects on spring wheat yield in the Canadian Prairies using DSSAT wheat models," Agricultural Water Management, Elsevier, vol. 244(C).
    3. Gan, Y.T. & Warkentin, T.D. & Bing, D.J. & Stevenson, F.C. & McDonald, C.L., 2010. "Chickpea water use efficiency in relation to cropping system, cultivar, soil nitrogen and Rhizobial inoculation in semiarid environments," Agricultural Water Management, Elsevier, vol. 97(9), pages 1375-1381, September.
    4. Jia, Qianmin & Sun, Lefeng & Ali, Shahzad & Zhang, Yan & Liu, Donghua & Kamran, Muhammad & Zhang, Peng & Jia, Zhikuan & Ren, Xiaolong, 2018. "Effect of planting density and pattern on maize yield and rainwater use efficiency in the Loess Plateau in China," Agricultural Water Management, Elsevier, vol. 202(C), pages 19-32.
    5. Shuang Liu & Yuru Gao & Huilin Lang & Yong Liu & Hong Zhang, 2022. "Effects of Conventional Tillage and No-Tillage Systems on Maize ( Zea mays L.) Growth and Yield, Soil Structure, and Water in Loess Plateau of China: Field Experiment and Modeling Studies," Land, MDPI, vol. 11(11), pages 1-14, October.
    6. Hergert, G.W. & Margheim, J.F. & Pavlista, A.D. & Martin, D.L. & Supalla, R.J. & Isbell, T.A., 2016. "Yield, irrigation response, and water productivity of deficit to fully irrigated spring canola," Agricultural Water Management, Elsevier, vol. 168(C), pages 96-103.
    7. Katori Miyasaka & Takafumi Miyasaka & Jumpei Ota & Siilegmaa Batsukh & Undarmaa Jamsran, 2021. "Effects of Wheat and Rapeseed Production on Soil Water Storage in Mongolian Rangeland," Agriculture, MDPI, vol. 11(9), pages 1-21, September.
    8. Hergert, G.W. & Margheim, J.F. & Pavlista, A.D. & Martin, D.L. & Isbell, T.A. & Supalla, R.J., 2016. "Irrigation response and water productivity of deficit to fully irrigated spring camelina," Agricultural Water Management, Elsevier, vol. 177(C), pages 46-53.
    9. Jia, Qianmin & Sun, Lefeng & Mou, Hongyan & Ali, Shahzad & Liu, Donghua & Zhang, Yan & Zhang, Peng & Ren, Xiaolong & Jia, Zhikuan, 2018. "Effects of planting patterns and sowing densities on grain-filling, radiation use efficiency and yield of maize (Zea mays L.) in semi-arid regions," Agricultural Water Management, Elsevier, vol. 201(C), pages 287-298.
    10. Navarro-Pineda, Freddy S. & Baz-Rodríguez, Sergio A. & Handler, Robert & Sacramento-Rivero, Julio C., 2016. "Advances on the processing of Jatropha curcas towards a whole-crop biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 247-269.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krupinsky, J.M. & Tanaka, D.L. & Merrill, S.D. & Liebig, M.A. & Hanson, J.D., 2006. "Crop sequence effects of 10 crops in the northern Great Plains," Agricultural Systems, Elsevier, vol. 88(2-3), pages 227-254, June.
    2. Yonts, C. Dean & Haghverdi, Amir & Reichert, David L. & Irmak, Suat, 2018. "Deficit irrigation and surface residue cover effects on dry bean yield, in-season soil water content and irrigation water use efficiency in western Nebraska high plains," Agricultural Water Management, Elsevier, vol. 199(C), pages 138-147.
    3. Massigoge, Ignacio & Baral, Rudra & Cominelli, Sofía & Denson, Ethan & Helguera, Paula García & Guareschi, Cesar & Simão, Luana M. & Rud, Joaquín Peraza & Pires, Carlos B. & Dille, J. Anita & Lollato,, 2024. "Exploring alternative crop rotations to continuous winter wheat for agricultural intensification in the US central Great Plains," Agricultural Systems, Elsevier, vol. 216(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:96:y:2009:i:2:p:337-348. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.