IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v85y2006i3p279-286.html
   My bibliography  Save this article

Assessment of irrigation and nutrient effects on growth, yield and water use efficiency of Indian mustard (Brassica juncea) in central India

Author

Listed:
  • Mandal, K.G.
  • Hati, K.M.
  • Misra, A.K.
  • Bandyopadhyay, K.K.

Abstract

No abstract is available for this item.

Suggested Citation

  • Mandal, K.G. & Hati, K.M. & Misra, A.K. & Bandyopadhyay, K.K., 2006. "Assessment of irrigation and nutrient effects on growth, yield and water use efficiency of Indian mustard (Brassica juncea) in central India," Agricultural Water Management, Elsevier, vol. 85(3), pages 279-286, October.
  • Handle: RePEc:eee:agiwat:v:85:y:2006:i:3:p:279-286
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(06)00137-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Al-Jaloud, Ali A. & Hussian, Ghulam & Karimulla, Shaik & Al-Hamidi, Akil H., 1996. "Effect of irrigation and nitrogen on yield and yield components of two rapeseed cultivars," Agricultural Water Management, Elsevier, vol. 30(1), pages 57-68, March.
    2. Sharma, D. K. & Singh, K. N., 1993. "Effect of irrigation on growth, yield and evapotranspiration of mustard (Brassica juncea) in partially reclaimed sodic soils," Agricultural Water Management, Elsevier, vol. 23(3), pages 225-232, June.
    3. Zhang, Yongqiang & Kendy, Eloise & Qiang, Yu & Changming, Liu & Yanjun, Shen & Hongyong, Sun, 2004. "Effect of soil water deficit on evapotranspiration, crop yield, and water use efficiency in the North China Plain," Agricultural Water Management, Elsevier, vol. 64(2), pages 107-122, January.
    4. Singh, P. K. & Mishra, A. K. & Imtiyaz, Mohd., 1991. "Moisture stress and the water use efficiency of mustard," Agricultural Water Management, Elsevier, vol. 20(3), pages 245-253, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sanjay Singh Rathore & Subhash Babu & Kapila Shekhawat & Vinod K. Singh & Pravin Kumar Upadhyay & Rajiv Kumar Singh & Rishi Raj & Harveer Singh & Fida Mohammad Zaki, 2022. "Oilseed Brassica Species Diversification and Crop Geometry Influence the Productivity, Economics, and Environmental Footprints under Semi-Arid Regions," Sustainability, MDPI, vol. 14(4), pages 1-18, February.
    2. Dogan, E. & Copur, O. & Kahraman, A. & Kirnak, H. & Guldur, M.E., 2011. "Supplemental irrigation effect on canola yield components under semiarid climatic conditions," Agricultural Water Management, Elsevier, vol. 98(9), pages 1403-1408, July.
    3. Hanuman Prasad Verma & Om Prakash Sharma & Amar Chand Shivran & Lala Ram Yadav & Rajendra Kumar Yadav & Malu Ram Yadav & Satya Narayan Meena & Hanuman Singh Jatav & Milan Kumar Lal & Vishnu D. Rajput , 2023. "Effect of Irrigation Schedule and Organic Fertilizer on Wheat Yield, Nutrient Uptake, and Soil Moisture in Northwest India," Sustainability, MDPI, vol. 15(13), pages 1-14, June.
    4. Kamkar, B. & Daneshmand, A.R. & Ghooshchi, F. & Shiranirad, A.H. & Safahani Langeroudi, A.R., 2011. "The effects of irrigation regimes and nitrogen rates on some agronomic traits of canola under a semiarid environment," Agricultural Water Management, Elsevier, vol. 98(6), pages 1005-1012, April.
    5. Mandal, K.G. & Thakur, A.K. & Mohanty, S., 2019. "Paired-row planting and furrow irrigation increased light interception, pod yield and water use efficiency of groundnut in a hot sub-humid climate," Agricultural Water Management, Elsevier, vol. 213(C), pages 968-977.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kundu, M. & Chakraborty, P.K. & Mukherjee, A. & Sarkar, S., 2008. "Influence of irrigation frequencies and phosphate fertilization on actual evapotranspiration rate, yield and water use pattern of rajmash (Phaseolus vulgaris L.)," Agricultural Water Management, Elsevier, vol. 95(4), pages 383-390, April.
    2. Tari, Ali Fuat, 2016. "The effects of different deficit irrigation strategies on yield, quality, and water-use efficiencies of wheat under semi-arid conditions," Agricultural Water Management, Elsevier, vol. 167(C), pages 1-10.
    3. de Azevedo, Pedro Vieira & de Sousa, Inaja Francisco & da Silva, Bernardo Barbosa & da Silva, Vicente de Paulo Rodrigues, 2006. "Water-use efficiency of dwarf-green coconut (Cocos nucifera L.) orchards in northeast Brazil," Agricultural Water Management, Elsevier, vol. 84(3), pages 259-264, August.
    4. Yan, Nana & Wu, Bingfang & Perry, Chris & Zeng, Hongwei, 2015. "Assessing potential water savings in agriculture on the Hai Basin plain, China," Agricultural Water Management, Elsevier, vol. 154(C), pages 11-19.
    5. Kundu, M. & Sarkar, S., 2009. "Growth and evapotranspiration pattern of rajmash (Phaseolus vulgaris L.) under varying irrigation schedules and phosphate levels in a hot sub-humid climate," Agricultural Water Management, Elsevier, vol. 96(8), pages 1268-1274, August.
    6. Kukal, M.S. & Irmak, S., 2020. "Impact of irrigation on interannual variability in United States agricultural productivity," Agricultural Water Management, Elsevier, vol. 234(C).
    7. Yuan, Chengfu & Feng, Shaoyuan & Huo, Zailin & Ji, Quanyi, 2019. "Effects of deficit irrigation with saline water on soil water-salt distribution and water use efficiency of maize for seed production in arid Northwest China," Agricultural Water Management, Elsevier, vol. 212(C), pages 424-432.
    8. Mati, Rastislav & Kotorová, Dana & Gombos, Milan & Kandra, Branislav, 2011. "Development of evapotranspiration and water supply of clay-loamy soil on the East Slovak Lowland," Agricultural Water Management, Elsevier, vol. 98(7), pages 1133-1140, May.
    9. Iqbal, M. Anjum & Shen, Yanjun & Stricevic, Ruzica & Pei, Hongwei & Sun, Hongyoung & Amiri, Ebrahim & Penas, Angel & del Rio, Sara, 2014. "Evaluation of the FAO AquaCrop model for winter wheat on the North China Plain under deficit irrigation from field experiment to regional yield simulation," Agricultural Water Management, Elsevier, vol. 135(C), pages 61-72.
    10. Ali, M.H. & Hoque, M.R. & Hassan, A.A. & Khair, A., 2007. "Effects of deficit irrigation on yield, water productivity, and economic returns of wheat," Agricultural Water Management, Elsevier, vol. 92(3), pages 151-161, September.
    11. Chen, Yang & Wang, Lu & Tong, Ling & Hao, Xinmei & Wu, Xuanyi & Ding, Risheng & Kang, Shaozhong & Li, Sien, 2023. "Effects of biochar addition and deficit irrigation with brackish water on yield-scaled N2O emissions under drip irrigation with mulching," Agricultural Water Management, Elsevier, vol. 277(C).
    12. Cornish, Peter S. & Karmakar, Dinabandhu & Kumar, Ashok & Das, Sudipta & Croke, Barry, 2015. "Improving crop production for food security and improved livelihoods on the East India Plateau. I. Rainfall-related risks with rice and opportunities for improved cropping systems," Agricultural Systems, Elsevier, vol. 137(C), pages 166-179.
    13. Karrou, M. & Oweis, T., 2012. "Water and land productivities of wheat and food legumes with deficit supplemental irrigation in a Mediterranean environment," Agricultural Water Management, Elsevier, vol. 107(C), pages 94-103.
    14. Rudnick, D.R. & Irmak, S. & Djaman, K. & Sharma, V., 2017. "Impact of irrigation and nitrogen fertilizer rate on soil water trends and maize evapotranspiration during the vegetative and reproductive periods," Agricultural Water Management, Elsevier, vol. 191(C), pages 77-84.
    15. Sun, Hong-Yong & Liu, Chang-Ming & Zhang, Xi-Ying & Shen, Yan-Jun & Zhang, Yong-Qiang, 2006. "Effects of irrigation on water balance, yield and WUE of winter wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 85(1-2), pages 211-218, September.
    16. Li, Jinpeng & Wang, Yunqi & Zhang, Meng & Liu, Yang & Xu, Xuexin & Lin, Gang & Wang, Zhimin & Yang, Youming & Zhang, Yinghua, 2019. "Optimized micro-sprinkling irrigation scheduling improves grain yield by increasing the uptake and utilization of water and nitrogen during grain filling in winter wheat," Agricultural Water Management, Elsevier, vol. 211(C), pages 59-69.
    17. Peake, A.S. & Carberry, P.S. & Raine, S.R. & Gett, V. & Smith, R.J., 2016. "An alternative approach to whole-farm deficit irrigation analysis: Evaluating the risk-efficiency of wheat irrigation strategies in sub-tropical Australia," Agricultural Water Management, Elsevier, vol. 169(C), pages 61-76.
    18. Ren, Pinpin & Huang, Feng & Li, Baoguo, 2022. "Spatiotemporal patterns of water consumption and irrigation requirements of wheat-maize in the Huang-Huai-Hai Plain, China and options of their reduction," Agricultural Water Management, Elsevier, vol. 263(C).
    19. Feng, Xuyu & Liu, Haijun & Feng, Dongxue & Tang, Xiaopei & Li, Lun & Chang, Jie & Tanny, Josef & Liu, Ronghao, 2023. "Quantifying winter wheat evapotranspiration and crop coefficients under sprinkler irrigation using eddy covariance technology in the North China Plain," Agricultural Water Management, Elsevier, vol. 277(C).
    20. Fang, Q.X. & Ma, L. & Green, T.R. & Yu, Q. & Wang, T.D. & Ahuja, L.R., 2010. "Water resources and water use efficiency in the North China Plain: Current status and agronomic management options," Agricultural Water Management, Elsevier, vol. 97(8), pages 1102-1116, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:85:y:2006:i:3:p:279-286. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.