IDEAS home Printed from https://ideas.repec.org/a/ags/ccsesa/265123.html
   My bibliography  Save this article

An Integration of GIS and Simulation Models for a Cost Benefit Analysis of Irrigation Development

Author

Listed:
  • Ghimire, Monika
  • Stoecker, Art
  • Boyer, Tracy A.
  • Bhavsar, Hiren
  • Vitale, Jeffrey

Abstract

No abstract is available for this item.

Suggested Citation

  • Ghimire, Monika & Stoecker, Art & Boyer, Tracy A. & Bhavsar, Hiren & Vitale, Jeffrey, 2016. "An Integration of GIS and Simulation Models for a Cost Benefit Analysis of Irrigation Development," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 5(4).
  • Handle: RePEc:ags:ccsesa:265123
    DOI: 10.22004/ag.econ.265123
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/265123/files/P8-p58-70.pdf
    Download Restriction: no

    File URL: https://ageconsearch.umn.edu/record/265123/files/P8-p58-70.pdf?subformat=pdfa
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.265123?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Satti, Sudheer R. & Jacobs, Jennifer M., 2004. "A GIS-based model to estimate the regionally distributed drought water demand," Agricultural Water Management, Elsevier, vol. 66(1), pages 1-13, April.
    2. George, Biju A. & Raghuwanshi, N. S. & Singh, R., 2004. "Development and testing of a GIS integrated irrigation scheduling model," Agricultural Water Management, Elsevier, vol. 66(3), pages 221-237, May.
    3. Fortes, P.S. & Platonov, A.E. & Pereira, L.S., 2005. "GISAREG--A GIS based irrigation scheduling simulation model to support improved water use," Agricultural Water Management, Elsevier, vol. 77(1-3), pages 159-179, August.
    4. Eli Feinerman, 1994. "Value of information on crop response function to soil salinity in a farm‐level optimization model," Agricultural Economics, International Association of Agricultural Economists, vol. 10(3), pages 233-243, May.
    5. Datta, K. K. & Sharma, V. P. & Sharma, D. P., 1998. "Estimation of a production function for wheat under saline conditions," Agricultural Water Management, Elsevier, vol. 36(1), pages 85-94, February.
    6. Calera Belmonte, A. & Medrano Gonzalez, J. & Vela Mayorga, A. & Castano Fernandez, S., 1999. "GIS tools applied to the sustainable management of water resources: Application to the aquifer system 08-29," Agricultural Water Management, Elsevier, vol. 40(2-3), pages 207-220, May.
    7. Feinerman, Eli, 1994. "Value of information on crop response function to soil salinity in a farm-level optimization model," Agricultural Economics, Blackwell, vol. 10(3), pages 233-243, May.
    8. Knapp, Keith C. & Dinar, Ariel, 1986. "A Dynamic Analysis Of Optimal Water Use Under Saline Conditions," Western Journal of Agricultural Economics, Western Agricultural Economics Association, vol. 11(1), pages 1-9, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghimire, Monika & Bhavsar, Hiren & Choi, Jong San & Vitale, Jeffrey D. & Stoecker, Arthur L., 2012. "Integration Of Gis And Hydrological Models In A Feasibility Study Of Irrigation Under Salinity," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 124714, Agricultural and Applied Economics Association.
    2. Buaha, Gabriel Toichoa & Apland, Jeffrey & Hicks, Dale, 1995. "A Regression Analysis Of The Effects Of Planting Date And Variety On Corn Yields In Minnesota," Staff Papers 13872, University of Minnesota, Department of Applied Economics.
    3. Ojeda-Bustamante, Waldo & Gonzalez-Camacho, Juan Manuel & Sifuentes-Ibarra, Ernesto & Isidro, Esteban & Rendon-Pimentel, Luis, 2007. "Using spatial information systems to improve water management in Mexico," Agricultural Water Management, Elsevier, vol. 89(1-2), pages 81-88, April.
    4. Horst, M.G. & Shamutalov, S.S. & Pereira, L.S. & Goncalves, J.M., 2005. "Field assessment of the water saving potential with furrow irrigation in Fergana, Aral Sea basin," Agricultural Water Management, Elsevier, vol. 77(1-3), pages 210-231, August.
    5. Martínez-Santos, P. & Martínez-Alfaro, P.E., 2010. "Estimating groundwater withdrawals in areas of intensive agricultural pumping in central Spain," Agricultural Water Management, Elsevier, vol. 98(1), pages 172-181, December.
    6. Bonfante, A. & Monaco, E. & Manna, P. & De Mascellis, R. & Basile, A. & Buonanno, M. & Cantilena, G. & Esposito, A. & Tedeschi, A. & De Michele, C. & Belfiore, O. & Catapano, I. & Ludeno, G. & Salinas, 2019. "LCIS DSS—An irrigation supporting system for water use efficiency improvement in precision agriculture: A maize case study," Agricultural Systems, Elsevier, vol. 176(C).
    7. Knapp, Keith, 1991. "Irrigation Management and Investment under Saline, Limited Drainage Conditions," WAEA/ WFEA Conference Archive (1929-1995) 321476, Western Agricultural Economics Association.
    8. Pereira, L.S. & Paredes, P. & Sholpankulov, E.D. & Inchenkova, O.P. & Teodoro, P.R. & Horst, M.G., 2009. "Irrigation scheduling strategies for cotton to cope with water scarcity in the Fergana Valley, Central Asia," Agricultural Water Management, Elsevier, vol. 96(5), pages 723-735, May.
    9. Fan, Yubing & McCann, Laura M., 2017. "Farmers’ Adoption of Pressure Irrigation Systems and Scientific Scheduling Practices: An Application of Multilevel Models," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258458, Agricultural and Applied Economics Association.
    10. Ramos, T.B. & Gonalves, M.C. & Castanheira, N.L. & Martins, J.C. & Santos, F.L. & Prazeres, A. & Fernandes, M.L., 2009. "Effect of sodium and nitrogen on yield function of irrigated maize in southern Portugal," Agricultural Water Management, Elsevier, vol. 96(4), pages 585-594, April.
    11. Xie, Yang & Zilberman, David, 2014. "The Economics of Water Project Capacities and Conservation Technologies," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 169820, Agricultural and Applied Economics Association.
    12. Raffaele Casa & Matteo Rossi & Giuseppe Sappa & Antonio Trotta, 2009. "Assessing Crop Water Demand by Remote Sensing and GIS for the Pontina Plain, Central Italy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(9), pages 1685-1712, July.
    13. Martin de Santa Olalla, F. & Calera, A. & Dominguez, A., 2003. "Monitoring irrigation water use by combining Irrigation Advisory Service, and remotely sensed data with a geographic information system," Agricultural Water Management, Elsevier, vol. 61(2), pages 111-124, June.
    14. Mojid, M.A. & Murad, K.F.I. & Tabriz, S.S. & Wyseure, G.C.L., 2013. "An advantageous level of irrigation water salinity for wheat cultivation," Journal of the Bangladesh Agricultural University, Bangladesh Agricultural University Research System (BAURES), vol. 11.
    15. José A. Aznar-Sánchez & Luis J. Belmonte-Ureña & Juan F. Velasco-Muñoz & Diego L. Valera, 2019. "Aquifer Sustainability and the Use of Desalinated Seawater for Greenhouse Irrigation in the Campo de Níjar, Southeast Spain," IJERPH, MDPI, vol. 16(5), pages 1-16, March.
    16. Sadeh, A. & Ravina, I., 2000. "Relationships between yield and irrigation with low-quality water -- a system approach," Agricultural Systems, Elsevier, vol. 64(2), pages 99-113, May.
    17. Satti, Sudheer R. & Jacobs, Jennifer M. & Irmak, Suat, 2004. "Agricultural water management in a humid region: sensitivity to climate, soil and crop parameters," Agricultural Water Management, Elsevier, vol. 70(1), pages 51-65, October.
    18. Romero, Consuelo C. & Dukes, Michael D. & Baigorria, Guillermo A. & Cohen, Ron, 2009. "Comparing theoretical irrigation requirement and actual irrigation for citrus in Florida," Agricultural Water Management, Elsevier, vol. 96(3), pages 473-483, March.
    19. Knapp, Keith C. & Baerenklau, Kenneth A., 2006. "Ground Water Quantity and Quality Management: Agricultural Production and Aquifer Salinization over Long Time Scales," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 31(3), pages 1-26, December.
    20. Martin de Santa Olalla, F.J. & Dominguez, A. & Artigao, A. & Fabeiro, C. & Ortega, J.F., 2005. "Integrated water resources management of the Hydrogeological Unit "Eastern Mancha" using Bayesian Belief Networks," Agricultural Water Management, Elsevier, vol. 77(1-3), pages 21-36, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:ccsesa:265123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: http://www.ccsenet.org/sar .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.