IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v59y2003i2p155-167.html
   My bibliography  Save this article

Production of garlic (Allium sativum L.) under controlled deficit irrigation in a semi-arid climate

Author

Listed:
  • Fabeiro Cortes, C.
  • Martin de Santa Olalla, F.
  • Lopez Urrea, R.

Abstract

No abstract is available for this item.

Suggested Citation

  • Fabeiro Cortes, C. & Martin de Santa Olalla, F. & Lopez Urrea, R., 2003. "Production of garlic (Allium sativum L.) under controlled deficit irrigation in a semi-arid climate," Agricultural Water Management, Elsevier, vol. 59(2), pages 155-167, March.
  • Handle: RePEc:eee:agiwat:v:59:y:2003:i:2:p:155-167
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(02)00125-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fabeiro, C. & Martin de Santa Olalla, F. & de Juan, J. A., 2002. "Production of muskmelon (Cucumis melo L.) under controlled deficit irrigation in a semi-arid climate," Agricultural Water Management, Elsevier, vol. 54(2), pages 93-105, March.
    2. Fabeiro, C. & Martin de Santa Olalla, F. & de Juan, J. A., 2001. "Yield and size of deficit irrigated potatoes," Agricultural Water Management, Elsevier, vol. 48(3), pages 255-266, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Villalobos, F. J. & Testi, L. & Rizzalli, R. & Orgaz, F., 2004. "Evapotranspiration and crop coefficients of irrigated garlic (Allium sativum L.) in a semi-arid climate," Agricultural Water Management, Elsevier, vol. 64(3), pages 233-249, February.
    2. Sapino, Francesco & Pérez-Blanco, C. Dionisio & Gutiérrez-Martín, Carlos & García-Prats, Alberto & Pulido-Velazquez, Manuel, 2022. "Influence of crop-water production functions on the expected performance of water pricing policies in irrigated agriculture," Agricultural Water Management, Elsevier, vol. 259(C).
    3. Campoy, Jaime & Campos, Isidro & Plaza, Carmen & Calera, María & Jiménez, Nuria & Bodas, Vicente & Calera, Alfonso, 2019. "Water use efficiency and light use efficiency in garlic using a remote sensing-based approach," Agricultural Water Management, Elsevier, vol. 219(C), pages 40-48.
    4. Domínguez, A. & Martínez-Romero, A. & Leite, K.N. & Tarjuelo, J.M. & de Juan, J.A. & López-Urrea, R., 2013. "Combination of typical meteorological year with regulated deficit irrigation to improve the profitability of garlic growing in central spain," Agricultural Water Management, Elsevier, vol. 130(C), pages 154-167.
    5. Léllis, B.C. & Martínez-Romero, A. & Schwartz, R.C. & Pardo, J.J. & Tarjuelo, J.M. & Domínguez, A., 2022. "Effect of the optimized regulated deficit irrigation methodology on water use in garlic," Agricultural Water Management, Elsevier, vol. 260(C).
    6. Geerts, Sam & Raes, Dirk, 2009. "Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas," Agricultural Water Management, Elsevier, vol. 96(9), pages 1275-1284, September.
    7. Martin de Santa Olalla, F. & Dominguez-Padilla, A. & Lopez, R., 2004. "Production and quality of the onion crop (Allium cepa L.) cultivated under controlled deficit irrigation conditions in a semi-arid climate," Agricultural Water Management, Elsevier, vol. 68(1), pages 77-89, July.
    8. Sánchez-Virosta, A & Léllis, B.C & Pardo, J.J & Martínez-Romero, A & Sánchez-Gómez, D & Domínguez, A, 2020. "Functional response of garlic to optimized regulated deficit irrigation (ORDI) across crop stages and years: Is physiological performance impaired at the most sensitive stages to water deficit?," Agricultural Water Management, Elsevier, vol. 228(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Buchong & Li, Feng-Min & Huang, Gaobao & Cheng, Zi-Yong & Zhang, Yanhong, 2006. "Yield performance of spring wheat improved by regulated deficit irrigation in an arid area," Agricultural Water Management, Elsevier, vol. 79(1), pages 28-42, January.
    2. Geerts, Sam & Raes, Dirk, 2009. "Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas," Agricultural Water Management, Elsevier, vol. 96(9), pages 1275-1284, September.
    3. Martin de Santa Olalla, F. & Dominguez-Padilla, A. & Lopez, R., 2004. "Production and quality of the onion crop (Allium cepa L.) cultivated under controlled deficit irrigation conditions in a semi-arid climate," Agricultural Water Management, Elsevier, vol. 68(1), pages 77-89, July.
    4. Koffi Djaman & Suat Irmak & Komlan Koudahe & Samuel Allen, 2021. "Irrigation Management in Potato ( Solanum tuberosum L.) Production: A Review," Sustainability, MDPI, vol. 13(3), pages 1-19, February.
    5. Trevor W. Crosby & Yi Wang, 2021. "Effects of Different Irrigation Management Practices on Potato ( Solanum tuberosum L.)," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    6. Althoff, Daniel & Filgueiras, Roberto & Dias, Santos Henrique Brant & Rodrigues, Lineu Neiva, 2019. "Impact of sum-of-hourly and daily timesteps in the computations of reference evapotranspiration across the Brazilian territory," Agricultural Water Management, Elsevier, vol. 226(C).
    7. Ørum, Jens Erik & Boesen, Mads Vejlby & Jovanovic, Zorica & Pedersen, Søren Marcus, 2010. "Farmers' incentives to save water with new irrigation systems and water taxation--A case study of Serbian potato production," Agricultural Water Management, Elsevier, vol. 98(3), pages 465-471, December.
    8. Ierna, Anita & Mauromicale, Giovanni, 2006. "Physiological and growth response to moderate water deficit of off-season potatoes in a Mediterranean environment," Agricultural Water Management, Elsevier, vol. 82(1-2), pages 193-209, April.
    9. Ma, Shou-Chen & Duan, Ai-Wang & Wang, Rui & Guan, Zhong-Mei & Yang, Shen-Jiao & Ma, Shou-Tian & Shao, Yun, 2015. "Root-sourced signal and photosynthetic traits, dry matter accumulation and remobilization, and yield stability in winter wheat as affected by regulated deficit irrigation," Agricultural Water Management, Elsevier, vol. 148(C), pages 123-129.
    10. Onder, Sermet & Caliskan, Mehmet Emin & Onder, Derya & Caliskan, Sevgi, 2005. "Different irrigation methods and water stress effects on potato yield and yield components," Agricultural Water Management, Elsevier, vol. 73(1), pages 73-86, April.
    11. Lovelli, S. & Pizza, S. & Caponio, T. & Rivelli, A.R. & Perniola, M., 2005. "Lysimetric determination of muskmelon crop coefficients cultivated under plastic mulches," Agricultural Water Management, Elsevier, vol. 72(2), pages 147-159, March.
    12. Ierna, Anita & Pandino, Gaetano & Lombardo, Sara & Mauromicale, Giovanni, 2011. "Tuber yield, water and fertilizer productivity in early potato as affected by a combination of irrigation and fertilization," Agricultural Water Management, Elsevier, vol. 101(1), pages 35-41.
    13. Kammoun, Mariem & Bouallous, Ons & Ksouri, Mohamed Fakhri & Gargouri-Bouzid, Radhia & Nouri-Ellouz, Oumèma, 2018. "Agro-physiological and growth response to reduced water supply of somatic hybrid potato plants (Solanum tuberosum L.) cultivated under greenhouse conditions," Agricultural Water Management, Elsevier, vol. 203(C), pages 9-19.
    14. Wang, Ruoshui & Wan, Shuqin & Kang, Yaohu & Dou, Chaoyin, 2014. "Assessment of secondary soil salinity prevention and economic benefit under different drip line placement and irrigation regime in northwest China," Agricultural Water Management, Elsevier, vol. 131(C), pages 41-49.
    15. Aziiba Emmanuel Asibi & Falong Hu & Zhilong Fan & Qiang Chai, 2022. "Optimized Nitrogen Rate, Plant Density, and Regulated Irrigation Improved Grain, Biomass Yields, and Water Use Efficiency of Maize at the Oasis Irrigation Region of China," Agriculture, MDPI, vol. 12(2), pages 1-14, February.
    16. Ahmadi, Seyed Hamid & Agharezaee, Mohammad & Kamgar-Haghighi, Ali Akbar & Sepaskhah, Ali Reza, 2014. "Effects of dynamic and static deficit and partial root zone drying irrigation strategies on yield, tuber sizes distribution, and water productivity of two field grown potato cultivars," Agricultural Water Management, Elsevier, vol. 134(C), pages 126-136.
    17. Montoya, F. & Camargo, D. & Domínguez, A. & Ortega, J.F. & Córcoles, J.I., 2018. "Parametrization of Cropsyst model for the simulation of a potato crop in a Mediterranean environment," Agricultural Water Management, Elsevier, vol. 203(C), pages 297-310.
    18. Selim, E.M. & Mosa, A.A. & El-Ghamry, A.M., 2009. "Evaluation of humic substances fertigation through surface and subsurface drip irrigation systems on potato grown under Egyptian sandy soil conditions," Agricultural Water Management, Elsevier, vol. 96(8), pages 1218-1222, August.
    19. Li, Yi-Jie & Yuan, Bao-Zhong & Bie, Zhi-Long & Kang, Yaohu, 2012. "Effect of drip irrigation criteria on yield and quality of muskmelon grown in greenhouse conditions," Agricultural Water Management, Elsevier, vol. 109(C), pages 30-35.
    20. Zeng, Chun-Zhi & Bie, Zhi-Long & Yuan, Bao-Zhong, 2009. "Determination of optimum irrigation water amount for drip-irrigated muskmelon (Cucumis melo L.) in plastic greenhouse," Agricultural Water Management, Elsevier, vol. 96(4), pages 595-602, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:59:y:2003:i:2:p:155-167. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.