IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v58y2003i3p241-254.html
   My bibliography  Save this article

Water requirements of irrigated mango orchards in northeast Brazil

Author

Listed:
  • de Azevedo, Pedro V.
  • da Silva, Bernardo B.
  • da Silva, Vicente P. R.

Abstract

No abstract is available for this item.

Suggested Citation

  • de Azevedo, Pedro V. & da Silva, Bernardo B. & da Silva, Vicente P. R., 2003. "Water requirements of irrigated mango orchards in northeast Brazil," Agricultural Water Management, Elsevier, vol. 58(3), pages 241-254, February.
  • Handle: RePEc:eee:agiwat:v:58:y:2003:i:3:p:241-254
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(02)00083-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Evans, R. G. & Spayd, S. E. & Wample, R. L. & Kroeger, M. W. & Mahan, M. O., 1993. "Water use of Vitis vinifera grapes in Washington," Agricultural Water Management, Elsevier, vol. 23(2), pages 109-124, April.
    2. Michelakis, Nic. & Vouyoukalou, E. & Clapaki, G., 1996. "Water use and soil moisture depletion by olive trees under different irrigation conditions," Agricultural Water Management, Elsevier, vol. 29(3), pages 315-325, February.
    3. Sepaskhah, A. R. & Kashefipour, S. M., 1995. "Evapotranspiration and crop coefficient of sweet lime under drip irrigation," Agricultural Water Management, Elsevier, vol. 27(3-4), pages 331-340, July.
    4. Angus, D. E. & Watts, P. J., 1984. "Evapotranspiration -- How good is the Bowen ratio method?," Agricultural Water Management, Elsevier, vol. 8(1-3), pages 133-150, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Spreer, Wolfram & Ongprasert, Somchai & Hegele, Martin & Wnsche, Jens N. & Mller, Joachim, 2009. "Yield and fruit development in mango (Mangifera indica L. cv. Chok Anan) under different irrigation regimes," Agricultural Water Management, Elsevier, vol. 96(4), pages 574-584, April.
    2. Feng, Genxiang & Zhang, Zhanyu & Wan, Changyu & Lu, Peirong & Bakour, Ahmad, 2017. "Effects of saline water irrigation on soil salinity and yield of summer maize (Zea mays L.) in subsurface drainage system," Agricultural Water Management, Elsevier, vol. 193(C), pages 205-213.
    3. Abdel-Sattar, Mahmoud & Al-Obeed, Rashid S. & Makhasha, Essa & Mostafa, Laila Y. & Abdelzaher, Rania A.E. & Rihan, Hail Z., 2024. "Improving mangoes' productivity and crop water productivity by 24-epibrassinosteroids and hydrogen peroxide under deficit irrigation," Agricultural Water Management, Elsevier, vol. 298(C).
    4. Wang, Feng-Xin & Kang, Yaohu & Liu, Shi-Ping & Hou, Xiao-Yan, 2007. "Effects of soil matric potential on potato growth under drip irrigation in the North China Plain," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 34-42, March.
    5. de Azevedo, Pedro Vieira & de Sousa, Inaja Francisco & da Silva, Bernardo Barbosa & da Silva, Vicente de Paulo Rodrigues, 2006. "Water-use efficiency of dwarf-green coconut (Cocos nucifera L.) orchards in northeast Brazil," Agricultural Water Management, Elsevier, vol. 84(3), pages 259-264, August.
    6. Zhao, Wenzhi & Liu, Bing & Zhang, Zhihui, 2010. "Water requirements of maize in the middle Heihe River basin, China," Agricultural Water Management, Elsevier, vol. 97(2), pages 215-223, February.
    7. Azevedo, Pedro Vieira de & Soares, Jose Monteiro & Silva, Vicente de Paulo Rodrigues da & Silva, Bernardo Barbosa da & Nascimento, Tarcizio, 2008. "Evapotranspiration of "Superior" grapevines under intermittent irrigation," Agricultural Water Management, Elsevier, vol. 95(3), pages 301-308, March.
    8. Spreer, W. & Nagle, M. & Neidhart, S. & Carle, R. & Ongprasert, S. & Muller, J., 2007. "Effect of regulated deficit irrigation and partial rootzone drying on the quality of mango fruits (Mangifera indica L., cv. `Chok Anan')," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 173-180, March.
    9. de Azevedo, Pedro V. & de Souza, Cleber B. & da Silva, Bernardo B. & da Silva, Vicente P.R., 2007. "Water requirements of pineapple crop grown in a tropical environment, Brazil," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 201-208, March.
    10. Bezerra, Bergson G. & da Silva, Bernardo B. & Bezerra, José R.C. & Sofiatti, Valdinei & dos Santos, Carlos A.C., 2012. "Evapotranspiration and crop coefficient for sprinkler-irrigated cotton crop in Apodi Plateau semiarid lands of Brazil," Agricultural Water Management, Elsevier, vol. 107(C), pages 86-93.
    11. Yuei-An Liou & Sanjib Kumar Kar, 2014. "Evapotranspiration Estimation with Remote Sensing and Various Surface Energy Balance Algorithms—A Review," Energies, MDPI, vol. 7(5), pages 1-29, April.
    12. Liu, Shuaikang & Lin, Xiang & Wang, Weiyan & Zhang, Baojun & Wang, Dong, 2022. "Supplemental irrigation increases grain yield, water productivity, and nitrogen utilization efficiency by improving nitrogen nutrition status in winter wheat," Agricultural Water Management, Elsevier, vol. 264(C).
    13. Rallo, G. & Paço, T.A. & Paredes, P. & Puig-Sirera, À. & Massai, R. & Provenzano, G. & Pereira, L.S., 2021. "Updated single and dual crop coefficients for tree and vine fruit crops," Agricultural Water Management, Elsevier, vol. 250(C).
    14. Zhao, Wenzhi & Chang, Xuexiang & Chang, Xueli & Zhang, Dengrong & Liu, Bing & Du, Jun & Lin, Pengfei, 2018. "Estimating water consumption based on meta-analysis and MODIS data for an oasis region in northwestern China," Agricultural Water Management, Elsevier, vol. 208(C), pages 478-489.
    15. López-López, Manuel & Espadafor, Mónica & Testi, Luca & Lorite, Ignacio Jesús & Orgaz, Francisco & Fereres, Elías, 2018. "Water use of irrigated almond trees when subjected to water deficits," Agricultural Water Management, Elsevier, vol. 195(C), pages 84-93.
    16. Yoo, Seung-Hwan & Choi, Jin-Yong & Jang, Min-Won, 2008. "Estimation of design water requirement using FAO Penman-Monteith and optimal probability distribution function in South Korea," Agricultural Water Management, Elsevier, vol. 95(7), pages 845-853, July.
    17. Fukuda, Shinji & Spreer, Wolfram & Yasunaga, Eriko & Yuge, Kozue & Sardsud, Vicha & Müller, Joachim, 2013. "Random Forests modelling for the estimation of mango (Mangifera indica L. cv. Chok Anan) fruit yields under different irrigation regimes," Agricultural Water Management, Elsevier, vol. 116(C), pages 142-150.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Williams, Larry E. & Levin, Alexander D. & Fidelibus, Matthew W., 2022. "Crop coefficients (Kc) developed from canopy shaded area in California vineyards," Agricultural Water Management, Elsevier, vol. 271(C).
    2. Tsay, T. S. & Huang, C. C., 2003. "Simulation and analysis of drip irrigation infiltration," IWMI Books, Reports H033383, International Water Management Institute.
    3. Jafari, Mohammad & Kamali, Hamidreza & Keshavarz, Ali & Momeni, Akbar, 2021. "Estimation of evapotranspiration and crop coefficient of drip-irrigated orange trees under a semi-arid climate," Agricultural Water Management, Elsevier, vol. 248(C).
    4. Tailin Li & Massimiliano Schiavo & David Zumr, . "Seasonal variations of vegetative indices and their correlation with evapotranspiration and soil water storage in a small agricultural catchment," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 0.
    5. Ohana-Levi, Noa & Munitz, Sarel & Ben-Gal, Alon & Netzer, Yishai, 2020. "Evaluation of within-season grapevine evapotranspiration patterns and drivers using generalized additive models," Agricultural Water Management, Elsevier, vol. 228(C).
    6. Ma, Xiaochi & Sanguinet, Karen A. & Jacoby, Pete W., 2020. "Direct root-zone irrigation outperforms surface drip irrigation for grape yield and crop water use efficiency while restricting root growth," Agricultural Water Management, Elsevier, vol. 231(C).
    7. Montoro, Amelia & Torija, Irene & Mañas, Fernando & López-Urrea, Ramón, 2020. "Lysimeter measurements of nocturnal and diurnal grapevine transpiration: Effect of soil water content, and phenology," Agricultural Water Management, Elsevier, vol. 229(C).
    8. Jamshidi, Sajad & Zand-Parsa, Shahrokh & Kamgar-Haghighi, Ali Akbar & Shahsavar, Ali Reza & Niyogi, Dev, 2020. "Evapotranspiration, crop coefficients, and physiological responses of citrus trees in semi-arid climatic conditions," Agricultural Water Management, Elsevier, vol. 227(C).
    9. Campos, Isidro & Neale, Christopher M.U. & Calera, Alfonso & Balbontín, Claudio & González-Piqueras, Jose, 2010. "Assessing satellite-based basal crop coefficients for irrigated grapes (Vitis vinifera L.)," Agricultural Water Management, Elsevier, vol. 98(1), pages 45-54, December.
    10. Ma, Xiaochi & Sanguinet, Karen A. & Jacoby, Pete W., 2019. "Performance of direct root-zone deficit irrigation on Vitis vinifera L. cv. Cabernet Sauvignon production and water use efficiency in semi-arid southcentral Washington," Agricultural Water Management, Elsevier, vol. 221(C), pages 47-57.
    11. Prashant K. Srivastava & Dawei Han & Aradhana Yaduvanshi & George P. Petropoulos & Sudhir Kumar Singh & Rajesh Kumar Mall & Rajendra Prasad, 2017. "Reference Evapotranspiration Retrievals from a Mesoscale Model Based Weather Variables for Soil Moisture Deficit Estimation," Sustainability, MDPI, vol. 9(11), pages 1-17, October.
    12. Ward, P. R. & Dunin, F. X., 2001. "Growing season evapotranspiration from duplex soils in south-western Australia," Agricultural Water Management, Elsevier, vol. 50(2), pages 141-159, September.
    13. C. Santos & I. Lorite & R. Allen & M. Tasumi, 2012. "Aerodynamic Parameterization of the Satellite-Based Energy Balance (METRIC) Model for ET Estimation in Rainfed Olive Orchards of Andalusia, Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(11), pages 3267-3283, September.
    14. Zhang, Baozhong & Kang, Shaozhong & Li, Fusheng & Tong, Ling & Du, Taisheng, 2010. "Variation in vineyard evapotranspiration in an arid region of northwest China," Agricultural Water Management, Elsevier, vol. 97(11), pages 1898-1904, November.
    15. Crosbie, Russell S. & Wilson, Brett & Hughes, Justin D. & McCulloch, Christopher & King, Warren McG., 2008. "A comparison of the water use of tree belts and pasture in recharge and discharge zones in a saline catchment in the Central West of NSW, Australia," Agricultural Water Management, Elsevier, vol. 95(3), pages 211-223, March.
    16. Ohana-Levi, Noa & Ben-Gal, Alon & Munitz, Sarel & Netzer, Yishai, 2022. "Grapevine crop evapotranspiration and crop coefficient forecasting using linear and non-linear multiple regression models," Agricultural Water Management, Elsevier, vol. 262(C).
    17. Zhang, Yanqun & Kang, Shaozhong & Ward, Eric J. & Ding, Risheng & Zhang, Xin & Zheng, Rui, 2011. "Evapotranspiration components determined by sap flow and microlysimetry techniques of a vineyard in northwest China: Dynamics and influential factors," Agricultural Water Management, Elsevier, vol. 98(8), pages 1207-1214, May.
    18. McLeod, Malem K. & Daniel, H. & Faulkner, R. & Murison, R., 2004. "Evaluation of an enclosed portable chamber to measure crop and pasture actual evapotranspiration at small scale," Agricultural Water Management, Elsevier, vol. 67(1), pages 15-34, June.
    19. Ward, P. R. & Dunin, F. X. & Micin, S. F., 2002. "Water use and root growth by annual and perennial pastures and subsequent crops in a phase rotation," Agricultural Water Management, Elsevier, vol. 53(1-3), pages 83-97, February.
    20. Leib, Brian G. & Matthews, Gary & Kroeger, Marty, 2003. "Development of an on-time logger for irrigation systems," Agricultural Water Management, Elsevier, vol. 62(1), pages 67-77, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:58:y:2003:i:3:p:241-254. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.