IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v302y2024ics0378377424003469.html
   My bibliography  Save this article

Simulating water-limited potato yields across the Netherlands with (SWAP-)WOFOST: Experimentation, model improvement and evaluation

Author

Listed:
  • ten Den, Tamara
  • Ravensbergen, Arie P.P.
  • van de Wiel, Inge
  • de Wit, Allard
  • van Evert, Frits K.
  • van Ittersum, Martin K.
  • Reidsma, Pytrik

Abstract

Water availability explains a large part of the spatial and temporal yield variability of ware potato in the Netherlands. Climate change is projected to lead to greater variability in water availability. Therefore, an accurate simulation of crop yield as a function of water availability is of high importance. Many crop models can simulate water-limited potato yields, but as detailed experimental data on drought and oxygen stress are scarce, models are often not well calibrated and evaluated. We set up a large experiment and an on-farm observational trial to calibrate and evaluate the simulation of water-limited yield of different potato cultivars across the Netherlands. In addition, we investigated the required model complexity to accurately simulate water-limited potato yields. The crop growth model WOFOST was used for simulations either as a single model or coupled with SWAP. Yields were simulated applying either only drought stress or by including both drought and oxygen stress. We employed two methods for simulating oxygen stress in SWAP-WOFOST. The calibration improved accuracy of simulated water-limited yields as demonstrated in our model evaluation. Both on sandy and clayey soils, water-limited yields were best simulated using SWAP-WOFOST while simulating oxygen stress using a process-based method in combination with a rooting density that decreases linearly with rooting depth. On sandy soils, the bottom boundary condition of free drainage was applicable. On clayey soils measured groundwater levels (or soil water pressure heads when measurements are not available) should be used as bottom boundary condition. On sandy soils both WOFOST and SWAP-WOFOST may be used, as results were similar. On clayey soils, WOFOST is less suitable, as it cannot simulate capillary rise. SWAP-WOFOST however has many options and parameters, which can result in large differences in results. Hence, a careful model set up and evaluation is required for each application.

Suggested Citation

  • ten Den, Tamara & Ravensbergen, Arie P.P. & van de Wiel, Inge & de Wit, Allard & van Evert, Frits K. & van Ittersum, Martin K. & Reidsma, Pytrik, 2024. "Simulating water-limited potato yields across the Netherlands with (SWAP-)WOFOST: Experimentation, model improvement and evaluation," Agricultural Water Management, Elsevier, vol. 302(C).
  • Handle: RePEc:eee:agiwat:v:302:y:2024:i:c:s0378377424003469
    DOI: 10.1016/j.agwat.2024.109011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424003469
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.109011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ahmadi, Seyed Hamid & Plauborg, Finn & Andersen, Mathias N. & Sepaskhah, Ali Reza & Jensen, Christian R. & Hansen, Søren, 2011. "Effects of irrigation strategies and soils on field grown potatoes: Root distribution," Agricultural Water Management, Elsevier, vol. 98(8), pages 1280-1290, May.
    2. Aliche, Ernest B. & Oortwijn, Marian & Theeuwen, Tom P.J.M. & Bachem, Christian W.B. & Visser, Richard G.F. & van der Linden, C. Gerard, 2018. "Drought response in field grown potatoes and the interactions between canopy growth and yield," Agricultural Water Management, Elsevier, vol. 206(C), pages 20-30.
    3. Satchithanantham, S. & Krahn, V. & Sri Ranjan, R. & Sager, S., 2014. "Shallow groundwater uptake and irrigation water redistribution within the potato root zone," Agricultural Water Management, Elsevier, vol. 132(C), pages 101-110.
    4. Wagg, Cameron & Hann, Sheldon & Kupriyanovich, Yulia & Li, Sheng, 2021. "Timing of short period water stress determines potato plant growth, yield and tuber quality," Agricultural Water Management, Elsevier, vol. 247(C).
    5. Silva, João Vasco & Reidsma, Pytrik & van Ittersum, Martin K., 2017. "Yield gaps in Dutch arable farming systems: Analysis at crop and crop rotation level," Agricultural Systems, Elsevier, vol. 158(C), pages 78-92.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Shaohui & Fan, Junliang & Zhang, Fucang & Wang, Haidong & Yang, Ling & Sun, Xin & Cheng, Minghui & Cheng, Houliang & Li, Zhijun, 2022. "Optimizing irrigation amount and potassium rate to simultaneously improve tuber yield, water productivity and plant potassium accumulation of drip-fertigated potato in northwest China," Agricultural Water Management, Elsevier, vol. 264(C).
    2. Sheng Li & Yulia Kupriyanovich & Cameron Wagg & Fangzhou Zheng & Sheldon Hann, 2023. "Water Deficit Duration Affects Potato Plant Growth, Yield and Tuber Quality," Agriculture, MDPI, vol. 13(10), pages 1-16, October.
    3. Paredes, Paula & D’Agostino, Daniela & Assif, Mahdi & Todorovic, Mladen & Pereira, Luis S., 2018. "Assessing potato transpiration, yield and water productivity under various water regimes and planting dates using the FAO dual Kc approach," Agricultural Water Management, Elsevier, vol. 195(C), pages 11-24.
    4. Koffi Djaman & Suat Irmak & Komlan Koudahe & Samuel Allen, 2021. "Irrigation Management in Potato ( Solanum tuberosum L.) Production: A Review," Sustainability, MDPI, vol. 13(3), pages 1-19, February.
    5. Abdul Waheed & Chuang Li & Murad Muhammad & Mushtaq Ahmad & Khalid Ali Khan & Hamed A. Ghramh & Zhongwei Wang & Daoyuan Zhang, 2023. "Sustainable Potato Growth under Straw Mulching Practices," Sustainability, MDPI, vol. 15(13), pages 1-16, July.
    6. Xing, Yingying & Zhang, Teng & Jiang, Wenting & Li, Peng & Shi, Peng & Xu, Guoce & Cheng, Shengdong & Cheng, Yuting & Fan, Zhang & Wang, Xiukang, 2022. "Effects of irrigation and fertilization on different potato varieties growth, yield and resources use efficiency in the Northwest China," Agricultural Water Management, Elsevier, vol. 261(C).
    7. Yi, Jun & Li, Huijie & Zhao, Ying & Shao, Ming'an & Zhang, Hailin & Liu, Muxing, 2022. "Assessing soil water balance to optimize irrigation schedules of flood-irrigated maize fields with different cultivation histories in the arid region," Agricultural Water Management, Elsevier, vol. 265(C).
    8. César Salazar & Andrés Acuña‐Duarte & José Maria Gil, 2023. "Drought shocks and price adjustments in local food markets in Chile: Do product quality and marketing channel matter?," Agricultural Economics, International Association of Agricultural Economists, vol. 54(3), pages 349-363, May.
    9. Zhou, Zhenjiang & Plauborg, Finn & Parsons, David & Andersen, Mathias Neumann, 2018. "Potato canopy growth, yield and soil water dynamics under different irrigation systems," Agricultural Water Management, Elsevier, vol. 202(C), pages 9-18.
    10. Kotir, Julius H. & Bell, Lindsay W. & Kirkegaard, John A. & Whish, Jeremy & Aikins, Kojo Atta, 2022. "Labour demand – The forgotten input influencing the execution and adoptability of alternative cropping systems in Eastern Australia," Agricultural Systems, Elsevier, vol. 203(C).
    11. Cheng, Minghui & Wang, Haidong & Zhang, Fucang & Wang, Xiukang & Liao, Zhenqi & Zhang, Shaohui & Yang, Qiliang & Fan, Junliang, 2023. "Effects of irrigation and fertilization regimes on tuber yield, water-nutrient uptake and productivity of potato under drip fertigation in sandy regions of northern China," Agricultural Water Management, Elsevier, vol. 287(C).
    12. Janik, Grzegorz & Kłosowicz, Izabela & Walczak, Amadeusz & Adamczewska-Sowińska, Katarzyna & Jama-Rodzeńska, Anna & Sowiński, Józef, 2021. "Application of the TDR technique for the determination of the dynamics of the spatial and temporal distribution of water uptake by plant roots during injection irrigation," Agricultural Water Management, Elsevier, vol. 252(C).
    13. Zhang, Yuehong & Li, Xianyue & Šimůnek, Jirí & Shi, Haibin & Chen, Ning & Hu, Qi & Tian, Tong, 2021. "Evaluating soil salt dynamics in a field drip-irrigated with brackish water and leached with freshwater during different crop growth stages," Agricultural Water Management, Elsevier, vol. 244(C).
    14. Giller, Ken E. & Andersson, Jens & Delaune, Thomas & Silva, João Vasco & Descheemaeker, Katrien & van de Ven, Gerrie & Schut, Antonius G.T. & van Wijk, Mark & Hammond, Jim & Hochman, Zvi & Taulya, God, 2022. "IFAD Research Series 83: The future of farming: who will produce our food?," IFAD Research Series 322005, International Fund for Agricultural Development (IFAD).
    15. Silva, João Vasco & Pede, Valerien O. & Radanielson, Ando M. & Kodama, Wataru & Duarte, Ary & de Guia, Annalyn H. & Malabayabas, Arelene Julia B. & Pustika, Arlyna Budi & Argosubekti, Nuning & Vithoon, 2022. "Revisiting yield gaps and the scope for sustainable intensification for irrigated lowland rice in Southeast Asia," Agricultural Systems, Elsevier, vol. 198(C).
    16. Talebnejad, R. & Sepaskhah, A.R., 2015. "Effect of deficit irrigation and different saline groundwater depths on yield and water productivity of quinoa," Agricultural Water Management, Elsevier, vol. 159(C), pages 225-238.
    17. Sheng Li, 2021. "Landscape Integrated Soil and Water Conservation (LISWC) System for Sloping Landscapes in Atlantic Canada," Agriculture, MDPI, vol. 11(5), pages 1-14, May.
    18. Chen, Ning & Li, Xianyue & Šimůnek, Jirí & Shi, Haibin & Ding, Zongjiang & Peng, Zunyuan, 2019. "Evaluating the effects of biodegradable film mulching on soil water dynamics in a drip-irrigated field," Agricultural Water Management, Elsevier, vol. 226(C).
    19. Gou, Qiqi & Zhu, Yonghua & Horton, Robert & Lü, Haishen & Wang, Zhenlong & Su, Jianbin & Cui, Chenyun & Zhang, Haoqiang & Wang, Xiaoyi & Zheng, Jingyao & Yuan, Fei, 2020. "Effect of climate change on the contribution of groundwater to the root zone of winter wheat in the Huaibei Plain of China," Agricultural Water Management, Elsevier, vol. 240(C).
    20. Naibo Xu & Tingyong Mao & Hengbin Zhang & Xingjun Huang & Yong Zhan & Jiahao Liu & Desheng Wang & Yunlong Zhai, 2024. "Planting Density and Sowing Date Strongly Influence Canopy Characteristics and Seed Yield of Soybean in Southern Xinjiang," Agriculture, MDPI, vol. 14(11), pages 1-16, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:302:y:2024:i:c:s0378377424003469. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.