Author
Listed:
- Javansalehi, Maryam
- Shourian, Mojtaba
Abstract
Understanding the intricate relationship between farmers’ water usage and its hydrological effects is crucial for developing adaptable water policies. However, conducting such an analysis proves challenging due to the lack of appropriate modeling tools that comprehensively integrate water policies, water utilization, and hydrological processes. To address this challenge, this study introduces an innovative socio-hydrological framework to investigate the interplay between farmer actions and water resources. This framework integrates an agent-based model, which is based on the Value-Belief-Norm (VBN) theory, linked with a distributed hydrological model (SWAT-MODFLOW) to capture farmer behaviors. The modeling framework is applied to the Mahabad River Basin to assess water use and hydrological impacts. To assess the framework's ability, Nash–Sutcliffe (NS) efficiency and the coefficient of determination (R2) are computed for simulating runoff, while Mean Absolute Residual Error (MAE) and Root Mean Square Error (RMSE) are computed for simulating groundwater head. Results demonstrate the acceptable performance of the proposed model, with NS = 0.61, R2 = 0.69, MAE = 1.16, and RMSE = 1.92. Moreover, this study integrates climate change data from the 6th IPCC report to evaluate the model's responsiveness to altering climate conditions. Findings suggest that farmers facing economic challenges tend to opt for high-profit crops to ameliorate their financial situation. So, without policy changes, climate change will reduce crop yield, farmer income, and water storage. Furthermore, the study evaluates enhancing irrigation efficiency and groundwater extraction restrictions to mitigate climate change effects. Enhancing irrigation efficiency annually conserves 38.39 MCM, boosts crop yields by 6 %, elevates farmer incomes, and encourages a shift toward low-water-consuming crops, contributing to regional groundwater sustainability. Overall, the results of this study can enhance our comprehension of the impact of human activities on hydrological cycles, offering valuable insights for water managers.
Suggested Citation
Javansalehi, Maryam & Shourian, Mojtaba, 2024.
"Assessing the impacts of climate change on agriculture and water systems via coupled human-hydrological modeling,"
Agricultural Water Management, Elsevier, vol. 300(C).
Handle:
RePEc:eee:agiwat:v:300:y:2024:i:c:s0378377424002543
DOI: 10.1016/j.agwat.2024.108919
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:300:y:2024:i:c:s0378377424002543. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.