IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v295y2024ics0378377424000672.html
   My bibliography  Save this article

Evaluation of daily crop reference evapotranspiration and sensitivity analysis of FAO Penman-Monteith equation using ERA5-Land reanalysis database in Sicily, Italy

Author

Listed:
  • Ippolito, Matteo
  • De Caro, Dario
  • Cannarozzo, Marcella
  • Provenzano, Giuseppe
  • Ciraolo, Giuseppe

Abstract

Crop evapotranspiration (ET) is one of the most important components in many hydrological processes. The crop reference evapotranspiration (ETo) represents the atmospheric water demand in each crop type, development stage, and management practices. The Penman-Monteith equation in the version suggested by the Food and Agriculture Organization (FAO56-PM), is one of the most used methods to estimate ETo. In several regions of the world, meteorological observations are not always available. The most recent reanalysis database ERA5-Land, released in 2019, can be useful to overcome this limit. The database provides, with a spatial grid of 0.1° latitude and 0.1° longitude, several hourly climate data such as air temperature, dew point temperature, solar radiation, and wind speed components all at 2.0 m above the soil surface, except wind speed components at 10 m, useful to apply the FAO56-PM equation. The objective of this research is to assess the quality of ERA5-Land climate variables data to estimate daily ETo in Sicily, Italy. The effect of the weather station’s elevation associated with the statistical indicators was also evaluated to verify how the morphology affects the measurements. Finally, the sensitivity analysis of the FAO56-PM equation was carried out to identify which climate variables have the most influence on the ETo estimation. For the period 2006–2015, the comparison between air temperature, global solar radiation, wind speed, and relative air humidity, measured from 39 ground weather stations in Sicily, and ERA5-Land was carried out and then, through FAO56-PM equation daily ETo values were estimated using both databases. The statistical indicators Root Mean Square Error (RMSE) and Mean Bias Error (MBE) confirm the possibility of considering the ERA5-Land a suitable solution to estimate ETo. The sensitivity analysis showed that good ETo estimation depends mainly on the accuracy of the relative air humidity and air temperature data.

Suggested Citation

  • Ippolito, Matteo & De Caro, Dario & Cannarozzo, Marcella & Provenzano, Giuseppe & Ciraolo, Giuseppe, 2024. "Evaluation of daily crop reference evapotranspiration and sensitivity analysis of FAO Penman-Monteith equation using ERA5-Land reanalysis database in Sicily, Italy," Agricultural Water Management, Elsevier, vol. 295(C).
  • Handle: RePEc:eee:agiwat:v:295:y:2024:i:c:s0378377424000672
    DOI: 10.1016/j.agwat.2024.108732
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424000672
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.108732?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paredes, Paula & Trigo, Isabel & de Bruin, Henk & Simões, Nuno & Pereira, Luis S., 2021. "Daily grass reference evapotranspiration with Meteosat Second Generation shortwave radiation and reference ET products," Agricultural Water Management, Elsevier, vol. 248(C).
    2. Prashant Srivastava & Tanvir Islam & Manika Gupta & George Petropoulos & Qiang Dai, 2015. "WRF Dynamical Downscaling and Bias Correction Schemes for NCEP Estimated Hydro-Meteorological Variables," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2267-2284, May.
    3. Minacapilli, M. & Cammalleri, C. & Ciraolo, G. & Rallo, G. & Provenzano, G., 2016. "Using scintillometry to assess reference evapotranspiration methods and their impact on the water balance of olive groves," Agricultural Water Management, Elsevier, vol. 170(C), pages 49-60.
    4. Sentelhas, Paulo C. & Gillespie, Terry J. & Santos, Eduardo A., 2010. "Evaluation of FAO Penman-Monteith and alternative methods for estimating reference evapotranspiration with missing data in Southern Ontario, Canada," Agricultural Water Management, Elsevier, vol. 97(5), pages 635-644, May.
    5. Jennifer F. Newman & Petra M. Klein, 2014. "The Impacts of Atmospheric Stability on the Accuracy of Wind Speed Extrapolation Methods," Resources, MDPI, vol. 3(1), pages 1-25, January.
    6. Nikolaos Gourgouletis & Marianna Gkavrou & Evangelos Baltas, 2023. "Comparison of Empirical ETo Relationships with ERA5-Land and In Situ Data in Greece," Geographies, MDPI, vol. 3(3), pages 1-23, August.
    7. Paredes, Paula & Martins, Diogo S. & Pereira, Luis Santos & Cadima, Jorge & Pires, Carlos, 2018. "Accuracy of daily estimation of grass reference evapotranspiration using ERA-Interim reanalysis products with assessment of alternative bias correction schemes," Agricultural Water Management, Elsevier, vol. 210(C), pages 340-353.
    8. Pelosi, A. & Chirico, G.B., 2021. "Regional assessment of daily reference evapotranspiration: Can ground observations be replaced by blending ERA5-Land meteorological reanalysis and CM-SAF satellite-based radiation data?," Agricultural Water Management, Elsevier, vol. 258(C).
    9. Pelosi, A., 2023. "Performance of the Copernicus European Regional Reanalysis (CERRA) dataset as proxy of ground-based agrometeorological data," Agricultural Water Management, Elsevier, vol. 289(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pelosi, A., 2023. "Performance of the Copernicus European Regional Reanalysis (CERRA) dataset as proxy of ground-based agrometeorological data," Agricultural Water Management, Elsevier, vol. 289(C).
    2. Paredes, Paula & Trigo, Isabel & de Bruin, Henk & Simões, Nuno & Pereira, Luis S., 2021. "Daily grass reference evapotranspiration with Meteosat Second Generation shortwave radiation and reference ET products," Agricultural Water Management, Elsevier, vol. 248(C).
    3. Pelosi, A. & Chirico, G.B., 2021. "Regional assessment of daily reference evapotranspiration: Can ground observations be replaced by blending ERA5-Land meteorological reanalysis and CM-SAF satellite-based radiation data?," Agricultural Water Management, Elsevier, vol. 258(C).
    4. Paredes, P. & Pereira, L.S. & Almorox, J. & Darouich, H., 2020. "Reference grass evapotranspiration with reduced data sets: Parameterization of the FAO Penman-Monteith temperature approach and the Hargeaves-Samani equation using local climatic variables," Agricultural Water Management, Elsevier, vol. 240(C).
    5. Nouri, Milad & Homaee, Mehdi, 2022. "Reference crop evapotranspiration for data-sparse regions using reanalysis products," Agricultural Water Management, Elsevier, vol. 262(C).
    6. De Caro, Dario & Ippolito, Matteo & Cannarozzo, Marcella & Provenzano, Giuseppe & Ciraolo, Giuseppe, 2023. "Assessing the performance of the Gaussian Process Regression algorithm to fill gaps in the time-series of daily actual evapotranspiration of different crops in temperate and continental zones using gr," Agricultural Water Management, Elsevier, vol. 290(C).
    7. Paredes, Paula & Martins, Diogo S. & Pereira, Luis Santos & Cadima, Jorge & Pires, Carlos, 2018. "Accuracy of daily estimation of grass reference evapotranspiration using ERA-Interim reanalysis products with assessment of alternative bias correction schemes," Agricultural Water Management, Elsevier, vol. 210(C), pages 340-353.
    8. Vásquez, Cristina & Célleri, Rolando & Córdova, Mario & Carrillo-Rojas, Galo, 2022. "Improving reference evapotranspiration (ETo) calculation under limited data conditions in the high Tropical Andes," Agricultural Water Management, Elsevier, vol. 262(C).
    9. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    10. Cunha, Angélica Carvalho & Filho, Luís Roberto Almeida Gabriel & Tanaka, Adriana Aki & Goes, Bruno Cesar & Putti, Fernando Ferrari, 2021. "Influence Of The Estimated Global Solar Radiation On The Reference Evapotranspiration Obtained Through The Penman-Monteith Fao 56 Method," Agricultural Water Management, Elsevier, vol. 243(C).
    11. Gonçalo C. Rodrigues & Ricardo P. Braga, 2021. "Estimation of Reference Evapotranspiration during the Irrigation Season Using Nine Temperature-Based Methods in a Hot-Summer Mediterranean Climate," Agriculture, MDPI, vol. 11(2), pages 1-13, February.
    12. Choudhury, B.U. & Singh, Anil Kumar & Pradhan, S., 2013. "Estimation of crop coefficients of dry-seeded irrigated rice–wheat rotation on raised beds by field water balance method in the Indo-Gangetic plains, India," Agricultural Water Management, Elsevier, vol. 123(C), pages 20-31.
    13. Houshang Ghamarnia & Vahid Rezvani & Erfan Khodaei & Hossein Mirzaei, 2012. "Time and Place Calibration of the Hargreaves Equation for Estimating Monthly Reference Evapotranspiration under Different Climatic Conditions," Journal of Agricultural Science, Canadian Center of Science and Education, vol. 4(3), pages 111-111, January.
    14. Yin, Juan & Deng, Zhen & Ines, Amor V.M. & Wu, Junbin & Rasu, Eeswaran, 2020. "Forecast of short-term daily reference evapotranspiration under limited meteorological variables using a hybrid bi-directional long short-term memory model (Bi-LSTM)," Agricultural Water Management, Elsevier, vol. 242(C).
    15. Awada, Hassan & Di Prima, Simone & Sirca, Costantino & Giadrossich, Filippo & Marras, Serena & Spano, Donatella & Pirastru, Mario, 2022. "A remote sensing and modeling integrated approach for constructing continuous time series of daily actual evapotranspiration," Agricultural Water Management, Elsevier, vol. 260(C).
    16. Negm, Amro & Minacapilli, Mario & Provenzano, Giuseppe, 2018. "Downscaling of American National Aeronautics and Space Administration (NASA) daily air temperature in Sicily, Italy, and effects on crop reference evapotranspiration," Agricultural Water Management, Elsevier, vol. 209(C), pages 151-162.
    17. Serra, J. & Paredes, P. & Cordovil, CMdS & Cruz, S. & Hutchings, NJ & Cameira, MR, 2023. "Is irrigation water an overlooked source of nitrogen in agriculture?," Agricultural Water Management, Elsevier, vol. 278(C).
    18. Qiu, Rangjian & Li, Longan & Liu, Chunwei & Wang, Zhenchang & Zhang, Baozhong & Liu, Zhandong, 2022. "Evapotranspiration estimation using a modified crop coefficient model in a rotated rice-winter wheat system," Agricultural Water Management, Elsevier, vol. 264(C).
    19. Allen, Richard G. & Dhungel, Ramesh & Dhungana, Bibha & Huntington, Justin & Kilic, Ayse & Morton, Charles, 2021. "Conditioning point and gridded weather data under aridity conditions for calculation of reference evapotranspiration," Agricultural Water Management, Elsevier, vol. 245(C).
    20. Pérez Albornoz, C. & Escalante Soberanis, M.A. & Ramírez Rivera, V. & Rivero, M., 2022. "Review of atmospheric stability estimations for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:295:y:2024:i:c:s0378377424000672. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.