IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v292y2024ics0378377424000052.html
   My bibliography  Save this article

Drip irrigation reduces the toxicity of heavy metals to soybean: By moving heavy metals out of the root zone and improving physiological metabolism

Author

Listed:
  • Zhang, Yuhao
  • Li, Tianxiao
  • Fu, Qiang
  • Hou, Renjie
  • Li, Mo
  • Liu, Dong
  • Shi, Guoxin
  • Yang, Xuechen
  • Xue, Ping

Abstract

Excessive heavy metal content in soil can seriously hinder plant physiological metabolism and growth. This study, with soybean, examined how drip irrigation reduced heavy metal toxicity. The drip irrigation experiments with four irrigation frequencies were conducted by controlling the lower limit of the soil matric potential (D1: −10 kPa; D2: −20 kPa; D3: −30 kPa; D4: −40 kPa). Through comparison with traditional surface irrigation, the effects of drip irrigation on heavy metal distribution, soybean growth status, physiological metabolism and transcriptome under Cd, Pb and Cr(VI) composite pollution were comprehensively analyzed. The results show that (i) The Cd, Pb and Cr(IV) in soil migrated away from the plant under drip irrigation, thereby reducing the inhibition of heavy metal stress on soybean growth at the root, among which D1 had the best improvement effect on soybean growth. (ii) Drip irrigation improved the resistance of soybean to heavy metal stress, and promoted the transport and fixation of free Cd2+, Pb2+ and Cr6+ in cells, thereby reducing the damage of oxidative stress and heavy metal ions to cell structure. (iii) Drip irrigation was conducive to the energy supply and protein stability of cell physiological metabolism, which helped the improvement of soybean physiological activity. Overall, compared with surface irrigation, drip irrigation reduced the toxicity of heavy metals to soybeans by moving heavy metals out of the root zone and enhancing physiological activity. The results of this study can provide a theoretical basis for the application of drip irrigation technology in the prevention and control of heavy metal pollution, and provide a new strategy for the safe production of agriculture.

Suggested Citation

  • Zhang, Yuhao & Li, Tianxiao & Fu, Qiang & Hou, Renjie & Li, Mo & Liu, Dong & Shi, Guoxin & Yang, Xuechen & Xue, Ping, 2024. "Drip irrigation reduces the toxicity of heavy metals to soybean: By moving heavy metals out of the root zone and improving physiological metabolism," Agricultural Water Management, Elsevier, vol. 292(C).
  • Handle: RePEc:eee:agiwat:v:292:y:2024:i:c:s0378377424000052
    DOI: 10.1016/j.agwat.2024.108670
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424000052
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.108670?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Amer, Kamal H., 2011. "Effect of irrigation method and quantity on squash yield and quality," Agricultural Water Management, Elsevier, vol. 98(8), pages 1197-1206, May.
    2. Zhang, Yuhao & Hou, Renjie & Fu, Qiang & Li, Tianxiao & Li, Mo & Cui, Song & Dong, Wencai, 2023. "Drip irrigation impacts on the root zone soil environment and enrichment characteristics of heavy metals in soybean," Agricultural Water Management, Elsevier, vol. 288(C).
    3. Yan, Shicheng & Wu, You & Fan, Junliang & Zhang, Fucang & Guo, Jinjin & Zheng, Jing & Wu, Lifeng, 2022. "Quantifying grain yield, protein, nutrient uptake and utilization of winter wheat under various drip fertigation regimes," Agricultural Water Management, Elsevier, vol. 261(C).
    4. Wan, Shuqin & Jiao, Yanping & Kang, Yaohu & Hu, Wei & Jiang, Shufang & Tan, Junli & Liu, Wei, 2012. "Drip irrigation of waxy corn (Zea mays L. var. ceratina Kulesh) for production in highly saline conditions," Agricultural Water Management, Elsevier, vol. 104(C), pages 210-220.
    5. Zhang, Tibin & Dong, Qin’ge & Zhan, Xiaoyun & He, Jianqiang & Feng, Hao, 2019. "Moving salts in an impermeable saline-sodic soil with drip irrigation to permit wolfberry production," Agricultural Water Management, Elsevier, vol. 213(C), pages 636-645.
    6. Xinyue Ran & Jianguo Zhou & Tingyong Mao & Shu Wu & Quanzhong Wu & Guodong Chen & Yunlong Zhai, 2023. "The Effect of Plant and Row Configuration on the Growth and Yield of Multiple Cropping of Soybeans in Southern Xinjiang, China," Sustainability, MDPI, vol. 15(19), pages 1-18, October.
    7. Cakmakci, Talip & Sahin, Ustun, 2021. "Improving silage maize productivity using recycled wastewater under different irrigation methods," Agricultural Water Management, Elsevier, vol. 255(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Shicheng & Wu, You & Fan, Junliang & Zhang, Fucang & Guo, Jinjin & Zheng, Jing & Wu, Lifeng, 2022. "Optimization of drip irrigation and fertilization regimes to enhance winter wheat grain yield by improving post-anthesis dry matter accumulation and translocation in northwest China," Agricultural Water Management, Elsevier, vol. 271(C).
    2. Lijun Yin & Yaxin Liao & Xiao Mou, 2024. "Delayed Sowing Can Improve Potassium Utilization Efficiency and Grain Potassium Concentration in Winter Wheat," Agriculture, MDPI, vol. 14(5), pages 1-16, April.
    3. Liu, Haijun & Yin, Congyan & Gao, Zhuangzhuang & Hou, Lizhu, 2021. "Evaluation of cucumber yield, economic benefit and water productivity under different soil matric potentials in solar greenhouses in North China," Agricultural Water Management, Elsevier, vol. 243(C).
    4. Wu, Dali & Xu, Xinxing & Chen, Yanling & Shao, Hui & Sokolowski, Eldad & Mi, Guohua, 2019. "Effect of different drip fertigation methods on maize yield, nutrient and water productivity in two-soils in Northeast China," Agricultural Water Management, Elsevier, vol. 213(C), pages 200-211.
    5. Wang, Ruoshui & Kang, Yaohu & Wan, Shuqin & Hu, Wei & Liu, Shiping & Jiang, Shufang & Liu, Shuhui, 2012. "Influence of different amounts of irrigation water on salt leaching and cotton growth under drip irrigation in an arid and saline area," Agricultural Water Management, Elsevier, vol. 110(C), pages 109-117.
    6. Yavuz, Duran & Seymen, Musa & Yavuz, Nurcan & Türkmen, Önder, 2015. "Effects of irrigation interval and quantity on the yield and quality of confectionary pumpkin grown under field conditions," Agricultural Water Management, Elsevier, vol. 159(C), pages 290-298.
    7. Abd El-Mageed, Taia A. & El- Samnoudi, Ibrahim M. & Ibrahim, Abd El-Aty M. & Abd El Tawwab, Ahmed R., 2018. "Compost and mulching modulates morphological, physiological responses and water use efficiency in sorghum (bicolor L. Moench) under low moisture regime," Agricultural Water Management, Elsevier, vol. 208(C), pages 431-439.
    8. Yaqi Wang & Ming Gao & Heting Chen & Yiwen Chen & Lei Wang & Rui Wang, 2023. "Fertigation and Carboxymethyl Cellulose Applications Enhance Water-Use Efficiency, Improving Soil Available Nutrients and Maize Yield in Salt-Affected Soil," Sustainability, MDPI, vol. 15(12), pages 1-18, June.
    9. Darouich, Hanaa & Karfoul, Razan & Eid, Haitham & Ramos, Tiago B. & Baddour, Nisreen & Moustafa, Ali & Assaad, Mahmoud I., 2020. "Modeling Zucchini squash irrigation requirements in the Syrian Akkar region using the FAO56 dual-Kc approach," Agricultural Water Management, Elsevier, vol. 229(C).
    10. Arbat, G. & Roselló, A. & Domingo Olivé, F. & Puig-Bargués, J. & González Llinàs, E. & Duran-Ros, M. & Pujol, J. & Ramírez de Cartagena, F., 2013. "Soil water and nitrate distribution under drip irrigated corn receiving pig slurry," Agricultural Water Management, Elsevier, vol. 120(C), pages 11-22.
    11. Fu, Xiaoke & Wu, Xiao & Wang, Haoyu & Chen, Yiwen & Wang, Rui & Wang, Yaqi, 2023. "Effects of fertigation with carboxymethyl cellulose potassium on water conservation, salt suppression, and maize growth in salt-affected soil," Agricultural Water Management, Elsevier, vol. 287(C).
    12. Sun, Jiaxia & Kang, Yaohu & Wan, Shuqin, 2013. "Effects of an imbedded gravel–sand layer on reclamation of coastal saline soils under drip irrigation and on plant growth," Agricultural Water Management, Elsevier, vol. 123(C), pages 12-19.
    13. Li, Xiaobin & Kang, Yaohu, 2020. "Agricultural utilization and vegetation establishment on saline-sodic soils using a water–salt regulation method for scheduled drip irrigation," Agricultural Water Management, Elsevier, vol. 231(C).
    14. Chen, Xiulong & Kang, Yaohu & Wan, Shuqin & Li, Xiaobin & Guo, Liping, 2015. "Influence of mulches on urban vegetation construction in coastal saline land under drip irrigation in North China," Agricultural Water Management, Elsevier, vol. 158(C), pages 145-155.
    15. Zhang, Tibin & Dong, Qin’ge & Zhan, Xiaoyun & He, Jianqiang & Feng, Hao, 2019. "Moving salts in an impermeable saline-sodic soil with drip irrigation to permit wolfberry production," Agricultural Water Management, Elsevier, vol. 213(C), pages 636-645.
    16. Yerli, Caner & Sahin, Ustun & Oztas, Taskin, 2022. "CO2 emission from soil in silage maize irrigated with wastewater under deficit irrigation in direct sowing practice," Agricultural Water Management, Elsevier, vol. 271(C).
    17. Zong, Rui & Han, Yue & Tan, Mingdong & Zou, Ruihan & Wang, Zhenhua, 2022. "Migration characteristics of soil salinity in saline-sodic cotton field with different reclamation time in non-irrigation season," Agricultural Water Management, Elsevier, vol. 263(C).
    18. Dong, Shide & Wan, Shuqin & Kang, Yaohu & Miao, Junxia & Li, Xiaobin, 2021. "Different mulching materials influence the reclamation of saline soil and growth of the Lycium barbarum L. under drip-irrigation in saline wasteland in northwest China," Agricultural Water Management, Elsevier, vol. 247(C).
    19. Wiktor Halecki & Dawid Bedla, 2022. "Global Wheat Production and Threats to Supply Chains in a Volatile Climate Change and Energy Crisis," Resources, MDPI, vol. 11(12), pages 1-11, December.
    20. Abd El-Mageed, Taia A. & Semida, Wael M. & Abd El-Wahed, Mohamed H., 2016. "Effect of mulching on plant water status, soil salinity and yield of squash under summer-fall deficit irrigation in salt affected soil," Agricultural Water Management, Elsevier, vol. 173(C), pages 1-12.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:292:y:2024:i:c:s0378377424000052. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.