IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v289y2023ics0378377423003694.html
   My bibliography  Save this article

A global meta-analysis on surface and drip fertigation for annual crops under different fertilization levels

Author

Listed:
  • Delbaz, Reza
  • Ebrahimian, Hamed
  • Abbasi, Fariborz
  • Ghameshlou, Arezoo N.
  • Liaghat, Abdolmajid
  • Ranazadeh, Dariush

Abstract

So far, many studies have examined the effects of surface (FF) and drip (DF) fertigation compared to surface (FC) and drip (DC) irrigation along with fertilization at different levels of fertilizer on crop yield indices, nutrient use efficiency (NUE), and irrigation water productivity (WP); however, each of them have been conducted under different conditions. Because of the scattered results and the lack of a general conclusion from the published results, conducting a meta-analysis as a structured method for arriving at an overall conclusion regarding the effects of different fertigation methods on different indices is essential. This study was conducted to examine the effects of surface and drip fertigation methods and different fertilizer application levels on crop yield, NUE, and WP. To this end, eight global databases of publications (e.g., Scopus and Web of Science) were reviewed. A total of 5494 studies were extracted, of which 32 studies met the entry criteria for the meta-analysis. To assess the effects of fertigation, each study was used to extract the effect sizes for each index. A total of 119 effect sizes were obtained for crop yield, 85 for NUE, and 84 for WP. The meta-analysis results showed that surface and drip fertigation methods increased the average yield by 20%. NUE and WP on an average increased by 26% and 51%, respectively. Based on the reported results, the optimal fertilizer application level is 75% of the recommended dose, which can reduce fertilizer use by 25% without significantly reducing the yield. In general, fertigation can be recommended as an effective operation for improving the proposed indices examined in both surface and drip fertigation methods.

Suggested Citation

  • Delbaz, Reza & Ebrahimian, Hamed & Abbasi, Fariborz & Ghameshlou, Arezoo N. & Liaghat, Abdolmajid & Ranazadeh, Dariush, 2023. "A global meta-analysis on surface and drip fertigation for annual crops under different fertilization levels," Agricultural Water Management, Elsevier, vol. 289(C).
  • Handle: RePEc:eee:agiwat:v:289:y:2023:i:c:s0378377423003694
    DOI: 10.1016/j.agwat.2023.108504
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423003694
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108504?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Xiulu & Li, Jinshan & Zhang, Hanyue & van Dam, Jos & Hellegers, Petra & Ritzema, Henk, 2023. "Optimizing surface fertigation practices for application in farmers’ field in the North China Plain," Agricultural Water Management, Elsevier, vol. 284(C).
    2. Wang, Linlin & Li, Qiang & Coulter, Jeffrey A. & Xie, Junhong & Luo, Zhuzhu & Zhang, Renzhi & Deng, Xiping & Li, Linglin, 2020. "Winter wheat yield and water use efficiency response to organic fertilization in northern China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 229(C).
    3. Dong Guo & Chuanyong Chen & Baoyuan Zhou & Di Ma & William D. Batchelor & Xiao Han & Zaisong Ding & Mei Du & Ming Zhao & Ming Li & Wei Ma, 2022. "Drip Fertigation with Relatively Low Water and N Input Achieved Higher Grain Yield of Maize by Improving Pre- and Post-Silking Dry Matter Accumulation," Sustainability, MDPI, vol. 14(13), pages 1-20, June.
    4. Fernández, J.E. & Alcon, F. & Diaz-Espejo, A. & Hernandez-Santana, V. & Cuevas, M.V., 2020. "Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard," Agricultural Water Management, Elsevier, vol. 237(C).
    5. Cheng, Minghui & Wang, Haidong & Fan, Junliang & Zhang, Shaohui & Wang, Yanli & Li, Yuepeng & Sun, Xin & Yang, Ling & Zhang, Fucang, 2021. "Water productivity and seed cotton yield in response to deficit irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 255(C).
    6. Garg, Naveen & Choudhary, O.P. & Thaman, S. & Sharma, Vikas & Singh, Harmanjeet & Vashistha, Monika & Sekhon, K.S. & Sharda, Rakesh & Dhaliwal, M.S., 2022. "Effects of irrigation water quality and NPK-fertigation levels on plant growth, yield and tuber size of potatoes in a sandy loam alluvial soil of semi-arid region of Indian Punjab," Agricultural Water Management, Elsevier, vol. 266(C).
    7. Mohammadi, Adel & Besharat, Sina & Abbasi, Fariborz, 2019. "Effects of irrigation and fertilization management on reducing nitrogen losses and increasing corn yield under furrow irrigation," Agricultural Water Management, Elsevier, vol. 213(C), pages 1116-1129.
    8. Cheng, Minghui & Wang, Haidong & Fan, Junliang & Wang, Xiukang & Sun, Xin & Yang, Ling & Zhang, Shaohui & Xiang, Youzhen & Zhang, Fucang, 2021. "Crop yield and water productivity under salty water irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 256(C).
    9. Sue Duval & Richard Tweedie, 2000. "Trim and Fill: A Simple Funnel-Plot–Based Method of Testing and Adjusting for Publication Bias in Meta-Analysis," Biometrics, The International Biometric Society, vol. 56(2), pages 455-463, June.
    10. Allakonon, M. Gloriose B. & Zakari, Sissou & Tovihoudji, Pierre G. & Fatondji, A. Sènami & Akponikpè, P.B. Irénikatché, 2022. "Grain yield, actual evapotranspiration and water productivity responses of maize crop to deficit irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 270(C).
    11. Tong, Xuanyue & Wu, Pute & Liu, Xufei & Zhang, Lin & Zhou, Wei & Wang, Zhaoguo, 2022. "A global meta-analysis of fruit tree yield and water use efficiency under deficit irrigation," Agricultural Water Management, Elsevier, vol. 260(C).
    12. Deng, Xi-Ping & Shan, Lun & Zhang, Heping & Turner, Neil C., 2006. "Improving agricultural water use efficiency in arid and semiarid areas of China," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 23-40, February.
    13. Adu, Michael O. & Yawson, David O. & Armah, Frederick A. & Asare, Paul A. & Frimpong, Kwame A., 2018. "Meta-analysis of crop yields of full, deficit, and partial root-zone drying irrigation," Agricultural Water Management, Elsevier, vol. 197(C), pages 79-90.
    14. Wu, Dali & Xu, Xinxing & Chen, Yanling & Shao, Hui & Sokolowski, Eldad & Mi, Guohua, 2019. "Effect of different drip fertigation methods on maize yield, nutrient and water productivity in two-soils in Northeast China," Agricultural Water Management, Elsevier, vol. 213(C), pages 200-211.
    15. Bai, Shanshan & Kang, Yaohu & Wan, Shuqin, 2020. "Drip fertigation regimes for winter wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 228(C).
    16. Li, Haoru & Mei, Xurong & Wang, Jiandong & Huang, Feng & Hao, Weiping & Li, Baoguo, 2021. "Drip fertigation significantly increased crop yield, water productivity and nitrogen use efficiency with respect to traditional irrigation and fertilization practices: A meta-analysis in China," Agricultural Water Management, Elsevier, vol. 244(C).
    17. Simard, Richard & L'Ecuyer, Pierre, 2011. "Computing the Two-Sided Kolmogorov-Smirnov Distribution," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 39(i11).
    18. Sinha, Indu & Buttar, G.S. & Brar, A.S., 2017. "Drip irrigation and fertigation improve economics, water and energy productivity of spring sunflower (Helianthus annuus L.) in Indian Punjab," Agricultural Water Management, Elsevier, vol. 185(C), pages 58-64.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Kai & Liao, Huan & Hao, Haibo & Hou, Zhenan, 2024. "Water and nitrogen supply at spatially distinct locations improves cotton water productivity and nitrogen use efficiency and yield under drip irrigation," Agricultural Water Management, Elsevier, vol. 296(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Haidong & Wang, Naijiang & Quan, Hao & Zhang, Fucang & Fan, Junliang & Feng, Hao & Cheng, Minghui & Liao, Zhenqi & Wang, Xiukang & Xiang, Youzhen, 2022. "Yield and water productivity of crops, vegetables and fruits under subsurface drip irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 269(C).
    2. Wang, Xiaodong & Tian, Wei & Zheng, Wende & Shah, Sadiq & Li, Jianshe & Wang, Xiaozhuo & Zhang, Xueyan, 2023. "Quantitative relationships between salty water irrigation and tomato yield, quality, and irrigation water use efficiency: A meta-analysis," Agricultural Water Management, Elsevier, vol. 280(C).
    3. Qian Li & Yan Chen & Shikun Sun & Muyuan Zhu & Jing Xue & Zihan Gao & Jinfeng Zhao & Yihe Tang, 2022. "Research on Crop Irrigation Schedules Under Deficit Irrigation—A Meta-analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4799-4817, September.
    4. Li, Haoru & Li, Xiaoli & Mei, Xurong & Nangia, Vinay & Guo, Rui & Hao, Weiping & Wang, Jiandong, 2023. "An alternative water-fertilizer-saving management practice for wheat-maize cropping system in the North China Plain: Based on a 4-year field study," Agricultural Water Management, Elsevier, vol. 276(C).
    5. Cheng, Minghui & Wang, Haidong & Fan, Junliang & Zhang, Shaohui & Wang, Yanli & Li, Yuepeng & Sun, Xin & Yang, Ling & Zhang, Fucang, 2021. "Water productivity and seed cotton yield in response to deficit irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 255(C).
    6. Chen, Yu & Zhang, Jian-Hua & Chen, Mo-Xian & Zhu, Fu-Yuan & Song, Tao, 2023. "Optimizing water conservation and utilization with a regulated deficit irrigation strategy in woody crops: A review," Agricultural Water Management, Elsevier, vol. 289(C).
    7. Wen, Shenglin & Cui, Ningbo & Wang, Yaosheng & Gong, Daozhi & Xing, Liwen & Wu, Zongjun & Zhang, Yixuan & Zhao, Long & Fan, Junliang & Wang, Zhihui, 2024. "Optimizing deficit drip irrigation to improve yield,quality, and water productivity of apple in Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 296(C).
    8. Zhang, Tibin & Zou, Yufeng & Kisekka, Isaya & Biswas, Asim & Cai, Huanjie, 2021. "Comparison of different irrigation methods to synergistically improve maize’s yield, water productivity and economic benefits in an arid irrigation area," Agricultural Water Management, Elsevier, vol. 243(C).
    9. Franco Curadelli & Marcelo Alberto & Ernesto Martín Uliarte & Mariana Combina & Iván Funes-Pinter, 2023. "Meta-Analysis of Yields of Crops Fertilized with Compost Tea and Anaerobic Digestate," Sustainability, MDPI, vol. 15(2), pages 1-23, January.
    10. Wang, Linlin & Li, Lingling & Xie, Junhong & Luo, Zhuzhu & Sumera, Anwar & Zechariah, Effah & Fudjoe, Setor Kwami & Palta, Jairo A. & Chen, Yinglong, 2022. "Does plastic mulching reduce water footprint in field crops in China? A meta-analysis," Agricultural Water Management, Elsevier, vol. 260(C).
    11. Saitta, Daniela & Consoli, Simona & Ferlito, Filippo & Torrisi, Biagio & Allegra, Maria & Longo-Minnolo, Giuseppe & Ramírez-Cuesta, Juan Miguel & Vanella, Daniela, 2021. "Adaptation of citrus orchards to deficit irrigation strategies," Agricultural Water Management, Elsevier, vol. 247(C).
    12. Liu, Kai & Liao, Huan & Hao, Haibo & Hou, Zhenan, 2024. "Water and nitrogen supply at spatially distinct locations improves cotton water productivity and nitrogen use efficiency and yield under drip irrigation," Agricultural Water Management, Elsevier, vol. 296(C).
    13. Firouzabadi, Ali Ghadami & Baghani, Javad & Jovzi, Mehdi & Albaji, Mohammad, 2021. "Effects of wheat row spacing layout and drip tape spacing on yield and water productivity in sandy clay loam soil in a semi-arid region," Agricultural Water Management, Elsevier, vol. 251(C).
    14. Junhong Xie & Linlin Wang & Lingling Li & Sumera Anwar & Zhuzhu Luo & Effah Zechariah & Setor Kwami Fudjoe, 2021. "Yield, Economic Benefit, Soil Water Balance, and Water Use Efficiency of Intercropped Maize/Potato in Responses to Mulching Practices on the Semiarid Loess Plateau," Agriculture, MDPI, vol. 11(11), pages 1-16, November.
    15. Mo, Yan & Li, Guangyong & Wang, Dan & Lamm, Freddie R. & Wang, Jiandong & Zhang, Yanqun & Cai, Mingkun & Gong, Shihong, 2020. "Planting and preemergence irrigation procedures to enhance germination of subsurface drip irrigated corn," Agricultural Water Management, Elsevier, vol. 242(C).
    16. Ning, Dongfeng & Chen, Haiqing & Qin, Anzhen & Gao, Yang & Zhang, Jiyang & Duan, Aiwang & Wang, Xingpeng & Liu, Zhandong, 2024. "Optimizing irrigation and N fertigation regimes achieved high yield and water productivity and low N leaching in a maize field in the North China Plain," Agricultural Water Management, Elsevier, vol. 301(C).
    17. Brar, Harjeet Singh & Singh, Pritpal, 2022. "Pre-and post-sowing irrigation scheduling impacts on crop phenology and water productivity of cotton (Gossypium hirsutum L.) in sub-tropical north-western India," Agricultural Water Management, Elsevier, vol. 274(C).
    18. He, Rui & He, Min & Xu, Haidong & Zhang, Kun & Zhang, Mingcai & Ren, Dan & Li, Zhaohu & Zhou, Yuyi & Duan, Liusheng, 2023. "A novel plant growth regulator brazide improved maize water productivity in the arid region of Northwest China," Agricultural Water Management, Elsevier, vol. 287(C).
    19. Wang, Chong & Gao, Zhenzhen & Zhao, Jiongchao & Feng, Yupeng & Laraib, Iqra & Shang, Mengfei & Wang, Kaicheng & Chen, Fu & Chu, Qingquan, 2022. "Irrigation-induced hydrothermal variation affects greenhouse gas emissions and crop production," Agricultural Water Management, Elsevier, vol. 260(C).
    20. Zhang, Fan & Chen, Mengru & Fu, Jintao & Zhang, Xiangzhu & Li, Yuan & Shao, Yating & Xing, Yingying & Wang, Xiukang, 2023. "Coupling effects of irrigation amount and fertilization rate on yield, quality, water and fertilizer use efficiency of different potato varieties in Northwest China," Agricultural Water Management, Elsevier, vol. 287(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:289:y:2023:i:c:s0378377423003694. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.