IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v282y2023ics037837742300149x.html
   My bibliography  Save this article

Trade-off between hydraulic sensitivity, root hydraulic conductivity and water use efficiency in grafted Prunus under water deficit

Author

Listed:
  • Toro, Guillermo
  • Pastenes, Claudio
  • Salvatierra, Ariel
  • Pimientel, Paula

Abstract

Sweet cherry is mainly cultivated in arid and semi-arid areas. In the last decade, these areas have experienced a dramatic reduction in rainfall, which has resulted in water shortage for sweet cherry. The use of specific rootstock and scion combinations could help improve the tolerance of plants to water shortage events. This study reports on the influence of rootstocks on whole-plant performance under water deficit as detected by hydraulic sensitivity, root hydraulic conductivity (Lp), water use efficiency and sugar content. Four Prunus rootstocks/scion combinations - 'Bing/Colt', 'Lapins/Colt', 'Bing/Mx60', 'Lapins/Mx60', and two self-rooted rootstocks Colt and Maxma 60 - were acclimated for 30 days and then exposed to well-watered (WW) and water deficit (WD) conditions for 36 days. Whole-plant transpiration and growth were both influenced by WD, and two groups were identified based on responses: 'Bing/Colt', 'Bing/Mx60' and 'Mx60' had an early reduction (conservative strategy), whereas 'Lapins/Mx60', 'Lapins/Colt' and 'Colt' had late reduction (productive strategy) in transpiration as WD increased. Among the combinations, 'Lapins/Colt' and 'Colt' showed a remarkable growth response to the WD being less affected in shoot and root biomass. The 'Colt' rootstock maintained a higher Ψgs50 (near-isohydric behavior) than combinations using the 'Mx60' rootstock (near anisohydric behavior). The relationship between Lp and the variation of Ψpre-dawn-Ψmidday showed differences among rootstock/scion combinations, and under WD condition the reduction in Lp induced by WD affected the whole-plant WUE of combinations differently. Sucrose and sorbitol content in leaves and roots of WD-tolerant combinations such as 'Colt' and 'Lapins/Colt', showed a remarkable increase under WD condition. Our finding highlights the importance of the specific interaction between rootstock and scion, suggesting that combinations characterized by a higher water uptake capacity under conditions of lower water availability would be sustainable under minimal to moderate water deficit.

Suggested Citation

  • Toro, Guillermo & Pastenes, Claudio & Salvatierra, Ariel & Pimientel, Paula, 2023. "Trade-off between hydraulic sensitivity, root hydraulic conductivity and water use efficiency in grafted Prunus under water deficit," Agricultural Water Management, Elsevier, vol. 282(C).
  • Handle: RePEc:eee:agiwat:v:282:y:2023:i:c:s037837742300149x
    DOI: 10.1016/j.agwat.2023.108284
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837742300149X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108284?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Corey Lesk & Pedram Rowhani & Navin Ramankutty, 2016. "Influence of extreme weather disasters on global crop production," Nature, Nature, vol. 529(7584), pages 84-87, January.
    2. Blanco, Víctor & Domingo, Rafael & Pérez-Pastor, Alejandro & Blaya-Ros, Pedro José & Torres-Sánchez, Roque, 2018. "Soil and plant water indicators for deficit irrigation management of field-grown sweet cherry trees," Agricultural Water Management, Elsevier, vol. 208(C), pages 83-94.
    3. Opazo, Ismael & Toro, Guillermo & Salvatierra, Ariel & Pastenes, Claudio & Pimentel, Paula, 2020. "Rootstocks modulate the physiology and growth responses to water deficit and long-term recovery in grafted stone fruit trees," Agricultural Water Management, Elsevier, vol. 228(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Liuyue & Xu, Zhenci & Wang, Sufen & Bao, Jianxia & Fan, Yunfei & Daccache, Andre, 2022. "Optimal crop planting pattern can be harmful to reach carbon neutrality: Evidence from food-energy-water-carbon nexus perspective," Applied Energy, Elsevier, vol. 308(C).
    2. Kedi Liu & Ranran Wang & Inge Schrijver & Rutger Hoekstra, 2024. "Can we project well-being? Towards integral well-being projections in climate models and beyond," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-11, December.
    3. El-Saied E. Metwaly & Hatim M. Al-Yasi & Esmat F. Ali & Hamada A. Farouk & Saad Farouk, 2022. "Deteriorating Harmful Effects of Drought in Cucumber by Spraying Glycinebetaine," Agriculture, MDPI, vol. 12(12), pages 1-16, December.
    4. repec:ags:aaea22:335489 is not listed on IDEAS
    5. Teerachai Amnuaylojaroen & Pavinee Chanvichit, 2024. "Historical Analysis of the Effects of Drought on Rice and Maize Yields in Southeast Asia," Resources, MDPI, vol. 13(3), pages 1-18, March.
    6. N. Zhang & H. Huang, 2018. "Assessment of world disaster severity processed by Gaussian blur based on large historical data: casualties as an evaluating indicator," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(1), pages 173-187, May.
    7. Liu, Zhipeng & Jiao, Xiyun & Zhu, Chengli & Katul, Gabriel G. & Ma, Junyong & Guo, Weihua, 2021. "Micro-climatic and crop responses to micro-sprinkler irrigation," Agricultural Water Management, Elsevier, vol. 243(C).
    8. Teresa Armada Brás & Jonas Jägermeyr & Júlia Seixas, 2019. "Exposure of the EU-28 food imports to extreme weather disasters in exporting countries," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 11(6), pages 1373-1393, December.
    9. Singh, Kuntal & McClean, Colin J. & Büker, Patrick & Hartley, Sue E. & Hill, Jane K., 2017. "Mapping regional risks from climate change for rainfed rice cultivation in India," Agricultural Systems, Elsevier, vol. 156(C), pages 76-84.
    10. Marcinkowski, Paweł & Piniewski, Mikołaj, 2024. "Future changes in crop yield over Poland driven by climate change, increasing atmospheric CO2 and nitrogen stress," Agricultural Systems, Elsevier, vol. 213(C).
    11. Yusifzada, Tural, 2022. "Response of Inflation to the Climate Stress: Evidence from Azerbaijan," MPRA Paper 116522, University Library of Munich, Germany, revised 20 Sep 2022.
    12. Dániel Fróna & János Szenderák & Mónika Harangi-Rákos, 2019. "The Challenge of Feeding the World," Sustainability, MDPI, vol. 11(20), pages 1-18, October.
    13. Phetheet, Jirapat & Hill, Mary C. & Barron, Robert W. & Gray, Benjamin J. & Wu, Hongyu & Amanor-Boadu, Vincent & Heger, Wade & Kisekka, Isaya & Golden, Bill & Rossi, Matthew W., 2021. "Relating agriculture, energy, and water decisions to farm incomes and climate projections using two freeware programs, FEWCalc and DSSAT," Agricultural Systems, Elsevier, vol. 193(C).
    14. Francisco Costa & Fabien Forge & Jason Garred & João Paulo Pessoa, 2023. "The Impact of Climate Change on Risk and Return in Indian Agriculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 85(1), pages 1-27, May.
    15. Balázs Varga & Zsuzsanna Farkas & Emese Varga-László & Gyula Vida & Ottó Veisz, 2022. "Elevated Atmospheric CO 2 Concentration Influences the Rooting Habits of Winter-Wheat ( Triticum aestivum L.) Varieties," Sustainability, MDPI, vol. 14(6), pages 1-14, March.
    16. Qimeng Pan & Lysa Porth & Hong Li, 2022. "Assessing the Effectiveness of the Actuaries Climate Index for Estimating the Impact of Extreme Weather on Crop Yield and Insurance Applications," Sustainability, MDPI, vol. 14(11), pages 1-24, June.
    17. Alejandro del Pozo & Nidia Brunel-Saldias & Alejandra Engler & Samuel Ortega-Farias & Cesar Acevedo-Opazo & Gustavo A. Lobos & Roberto Jara-Rojas & Marco A. Molina-Montenegro, 2019. "Climate Change Impacts and Adaptation Strategies of Agriculture in Mediterranean-Climate Regions (MCRs)," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    18. Shahzad, Muhammad Faisal & Abdulai, Awudu, 2020. "Adaptation to extreme weather conditions and farm performance in rural Pakistan," Agricultural Systems, Elsevier, vol. 180(C).
    19. Kelly R. Wilson & Robert L. Myers & Mary K. Hendrickson & Emily A. Heaton, 2022. "Different Stakeholders’ Conceptualizations and Perspectives of Regenerative Agriculture Reveals More Consensus Than Discord," Sustainability, MDPI, vol. 14(22), pages 1-14, November.
    20. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    21. Bohan, David & Schmucki, Reto & Abay, Abrha & Termansen, Mette & Bane, Miranda & Charalabiis, Alice & Cong, Rong-Gang & Derocles, Stephane & Dorner, Zita & Forster, Matthieu & Gibert, Caroline & Harro, 2020. "Designing farmer-acceptable rotations that assure ecosystem service provision inthe face of climate change," MPRA Paper 112313, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:282:y:2023:i:c:s037837742300149x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.