IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v282y2023ics0378377423001117.html
   My bibliography  Save this article

Coupled soil water stress and environmental effects on changing photosynthetic traits in wheat and maize

Author

Listed:
  • Yang, Zhenfeng
  • Tian, Juncang
  • Wang, Zhi
  • Feng, Kepeng
  • Ouyang, Zan
  • Zhang, Lixin
  • Yan, Xinfang

Abstract

Soil water deficits limit the photosynthetic productivity of crops, resulting in reduced yields. However, the effects of soil water stress on leaf gas exchange parameters, actual quantum efficiency (ΦPSII), photosynthetic capacity (maximum electron transfer rate ETRmax, maximum photosynthetic rate Anmax, maximum carboxylation rate Vcmax25) and environmental parameters, such as photosynthetic active radiation (PAR), vapour pressure deficit (VPD), remains unclear. Especially, the dynamic responses of crops with different canopy structure types and phenological stages to water stress needs to be further clarified. In this study, we conducted a field experiment using wheat and maize under complete rainfall isolation to study the effects of coupled water stress and environmental factors on leaf gas exchange processes and photosynthetic capacity. Our results showed that the ΦPSII - PAR relationship in the wheat leaves(a C3 plant) was more sensitive to water stress than was that in the maize leaves (a C4 plant) and significantly differed with phenological stage. The coupling of water stress with VPD had a more pronounced effect on the gas exchange parameters (net photosynthetic rate (An), stomatal conductance (gsw), transpiration efficiency (TE), intrinsic water use efficiency (WUEi)) than coupling with PAR, especially for wheat, where the coupling effect of soil water content (SWC) with VPD was more pronounced as the degree of water stress increased. The SWC status did not significantly alter the wheat An-PAR relationship, in contrast to that in maize, wherein a strong effect of SWC on the An-PAR relationship was observed. Water stress had a more pronounced limiting effect on ETRmax in wheat than in maize. Anmax showed a weaker relationship with SWC in both wheat and maize, whereas Vcmax25 exhibited a stronger relationship with SWC. Additionally, the physiological response process should take into account the differences between phenological periods. Our study can be used as a reference for precise field irrigation.

Suggested Citation

  • Yang, Zhenfeng & Tian, Juncang & Wang, Zhi & Feng, Kepeng & Ouyang, Zan & Zhang, Lixin & Yan, Xinfang, 2023. "Coupled soil water stress and environmental effects on changing photosynthetic traits in wheat and maize," Agricultural Water Management, Elsevier, vol. 282(C).
  • Handle: RePEc:eee:agiwat:v:282:y:2023:i:c:s0378377423001117
    DOI: 10.1016/j.agwat.2023.108246
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423001117
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108246?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gago, J. & Douthe, C. & Coopman, R.E. & Gallego, P.P. & Ribas-Carbo, M. & Flexas, J. & Escalona, J. & Medrano, H., 2015. "UAVs challenge to assess water stress for sustainable agriculture," Agricultural Water Management, Elsevier, vol. 153(C), pages 9-19.
    2. Remko A Duursma, 2015. "Plantecophys - An R Package for Analysing and Modelling Leaf Gas Exchange Data," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-13, November.
    3. Kimberly A. Novick & Darren L. Ficklin & Paul C. Stoy & Christopher A. Williams & Gil Bohrer & A. Christopher Oishi & Shirley A. Papuga & Peter D. Blanken & Asko Noormets & Benjamin N. Sulman & Russel, 2016. "The increasing importance of atmospheric demand for ecosystem water and carbon fluxes," Nature Climate Change, Nature, vol. 6(11), pages 1023-1027, November.
    4. Ouyang, Zan & Tian, Juncang & Yan, Xinfang & Shen, Hui, 2020. "Effects of different concentrations of dissolved oxygen or temperatures on the growth, photosynthesis, yield and quality of lettuce," Agricultural Water Management, Elsevier, vol. 228(C).
    5. Daryanto, Stefani & Wang, Lixin & Jacinthe, Pierre-André, 2017. "Global synthesis of drought effects on cereal, legume, tuber and root crops production: A review," Agricultural Water Management, Elsevier, vol. 179(C), pages 18-33.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Du, Ying & Jiang, Jinbao & Yu, Zijian & Liu, Ziwei & Pan, Yingyang & Xiong, Kangni, 2024. "A knowledge guided deep learning framework for underground natural gas micro-leaks detection from hyperspectral imagery," Energy, Elsevier, vol. 294(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ning Chen & Yifei Zhang & Fenghui Yuan & Changchun Song & Mingjie Xu & Qingwei Wang & Guangyou Hao & Tao Bao & Yunjiang Zuo & Jianzhao Liu & Tao Zhang & Yanyu Song & Li Sun & Yuedong Guo & Hao Zhang &, 2023. "Warming-induced vapor pressure deficit suppression of vegetation growth diminished in northern peatlands," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Nadia Belmonte & Carlo Luetto & Stefano Staulo & Paola Rizzi & Marcello Baricco, 2017. "Case Studies of Energy Storage with Fuel Cells and Batteries for Stationary and Mobile Applications," Challenges, MDPI, vol. 8(1), pages 1-15, March.
    3. Deng, Juntao & Pan, Shijia & Zhou, Mingu & Gao, Wen & Yan, Yuncai & Niu, Zijie & Han, Wenting, 2023. "Optimum sampling window size and vegetation index selection for low-altitude multispectral estimation of root soil moisture content for Xuxiang Kiwifruit," Agricultural Water Management, Elsevier, vol. 282(C).
    4. Padilla-Díaz, C.M. & Rodriguez-Dominguez, C.M. & Hernandez-Santana, V. & Perez-Martin, A. & Fernandes, R.D.M. & Montero, A. & García, J.M. & Fernández, J.E., 2018. "Water status, gas exchange and crop performance in a super high density olive orchard under deficit irrigation scheduled from leaf turgor measurements," Agricultural Water Management, Elsevier, vol. 202(C), pages 241-252.
    5. Alejandro del Pozo & Nidia Brunel-Saldias & Alejandra Engler & Samuel Ortega-Farias & Cesar Acevedo-Opazo & Gustavo A. Lobos & Roberto Jara-Rojas & Marco A. Molina-Montenegro, 2019. "Climate Change Impacts and Adaptation Strategies of Agriculture in Mediterranean-Climate Regions (MCRs)," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    6. Gholami Zali, Ali & Ehsanzadeh, Parviz, 2018. "Exogenously applied proline as a tool to enhance water use efficiency: Case of fennel," Agricultural Water Management, Elsevier, vol. 197(C), pages 138-146.
    7. Mitter, Hermine & Schmid, Erwin, 2019. "Computing the economic value of climate information for water stress management exemplified by crop production in Austria," Agricultural Water Management, Elsevier, vol. 221(C), pages 430-448.
    8. Alfredo Valdes Ramos & Elsa N. Aguilera Gonzalez & Gloria Tobón Echeverri & Luis Samaniego Moreno & Lourdes Díaz Jiménez & Salvador Carlos Hernández, 2019. "Potential Uses of Treated Municipal Wastewater in a Semiarid Region of Mexico," Sustainability, MDPI, vol. 11(8), pages 1-23, April.
    9. Li, Cheng & Li, Zhaozhe & Zhang, Fangmin & Lu, Yanyu & Duan, Chunfeng & Xu, Yang, 2023. "Seasonal dynamics of carbon dioxide and water fluxes in a rice-wheat rotation system in the Yangtze-Huaihe region of China," Agricultural Water Management, Elsevier, vol. 275(C).
    10. Vizinho, André & Avelar, David & Fonseca, Ana Lúcia & Carvalho, Silvia & Sucena-Paiva, Leonor & Pinho, Pedro & Nunes, Alice & Branquinho, Cristina & Vasconcelos, Ana Cátia & Santos, Filipe Duarte & Ro, 2021. "Framing the application of Adaptation Pathways for agroforestry in Mediterranean drylands," Land Use Policy, Elsevier, vol. 104(C).
    11. Ma, Shuai & Wang, Liang-Jie & Chu, Lei & Jiang, Jiang, 2023. "Determination of ecological restoration patterns based on water security and food security in arid regions," Agricultural Water Management, Elsevier, vol. 278(C).
    12. Xinyu Zhao & Lizhi He & Kun Geng & Haiyan Zhang & Jie Wang & Tao Gan & Xiali Mao & Xiaokai Zhang, 2024. "Effects of Combined Biochar and Chemical Fertilizer Application on Soil Fertility and Properties: A Two-Year Pot Experiment," Sustainability, MDPI, vol. 16(20), pages 1-13, October.
    13. Shan Jiang & Jian Zhou & Guojie Wang & Qigen Lin & Ziyan Chen & Yanjun Wang & Buda Su, 2022. "Cropland Exposed to Drought Is Overestimated without Considering the CO 2 Effect in the Arid Climatic Region of China," Land, MDPI, vol. 11(6), pages 1-21, June.
    14. Haidong Zhao & Lina Zhang & M. B. Kirkham & Stephen M. Welch & John W. Nielsen-Gammon & Guihua Bai & Jiebo Luo & Daniel A. Andresen & Charles W. Rice & Nenghan Wan & Romulo P. Lollato & Dianfeng Zheng, 2022. "U.S. winter wheat yield loss attributed to compound hot-dry-windy events," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    15. Zheng Fu & Philippe Ciais & I. Colin Prentice & Pierre Gentine & David Makowski & Ana Bastos & Xiangzhong Luo & Julia K. Green & Paul C. Stoy & Hui Yang & Tomohiro Hajima, 2022. "Atmospheric dryness reduces photosynthesis along a large range of soil water deficits," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Wang, Tianyu & Wang, Zhenhua & Zhang, Jinzhu & Ma, Kai, 2023. "Application effect of different oxygenation methods with mulched drip irrigation system in Xinjiang," Agricultural Water Management, Elsevier, vol. 275(C).
    17. Zhang, Yu & Liu, Xiaohong & Jiao, Wenzhe & Zhao, Liangju & Zeng, Xiaomin & Xing, Xiaoyu & Zhang, Lingnan & Hong, Yixue & Lu, Qiangqiang, 2022. "A new multi-variable integrated framework for identifying flash drought in the Loess Plateau and Qinling Mountains regions of China," Agricultural Water Management, Elsevier, vol. 265(C).
    18. Luxon Nhamo & James Magidi & Adolph Nyamugama & Alistair D. Clulow & Mbulisi Sibanda & Vimbayi G. P. Chimonyo & Tafadzwanashe Mabhaudhi, 2020. "Prospects of Improving Agricultural and Water Productivity through Unmanned Aerial Vehicles," Agriculture, MDPI, vol. 10(7), pages 1-18, July.
    19. Wang, Chunyu & Li, Sien & Wu, Mousong & Zhang, Wenxin & Guo, Zhenyu & Huang, Siyu & Yang, Danni, 2023. "Co-regulation of temperature and moisture in the irrigated agricultural ecosystem productivity," Agricultural Water Management, Elsevier, vol. 275(C).
    20. Hwanjo Chung & Seunghwan Wi & Byoung-Kwan Cho & Hoonsoo Lee, 2024. "Classification of Garlic ( Allium sativum L.) Crops by Fertilizer Differences Using Ground-Based Hyperspectral Imaging System," Agriculture, MDPI, vol. 14(8), pages 1-20, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:282:y:2023:i:c:s0378377423001117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.