IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v281y2023ics0378377423001002.html
   My bibliography  Save this article

Eddy covariance quantification of carbon and water dynamics in twin-row vs. single-row planted corn

Author

Listed:
  • Anapalli, Saseendran S.
  • Pinnamaneni, Srinivasa R.
  • Chastain, Daryl R.
  • Reddy, Krishna N.
  • Simmons, Clyde Douglas

Abstract

For sustainable irrigated crop production, enhancing the productivity of pumped water from aquifers, which are fast declining, is critical. In this investigation, the yield and water use efficiency (WUE) of corn planted in a single-row (SR) on a raised-bed ridge-furrow system was compared with corn planted in a twin-row (TR) pattern. The crop's consumptive water use (evapotranspiration, ET) was quantified using the eddy covariance (EC) technology. The crops for the investigation were raised on large-scale farmer’s fields (above 100 ha). In the EC system, CO2 and water vapor fluxes over corn plant canopies were monitored using an infrared gas analyzer, and wind turbulence was quantified using an omnidirectional 3D sonic anemometer. The LAI, grain yield, ET, net ecosystem exchange of CO2 (NEE), and gross primary productivity (GPP) measured under TR were higher than SR by 18%, 19%, 22%, 90%, and 41%, respectively. Also, WUE in NEE (WUENE, ratio of NEE to ET) was higher under TR than SR by 40%, rendering TR the best choice for corn planting in the region. WUE for grain yield (WUEGY, ratio of grain yield to ET) and net ecosystem respiration did not differ appreciably across TR and SR systems. The measured ET in TR was 518 mm, while SR was 426 mm during the crop season (emergence to physiological maturity). The study conducted in large-scale farm fields gives better confidence than results obtained based on conventional small-plot studies recommending the TR over SR planting in the region for grain yield and WUENE in corn production systems.

Suggested Citation

  • Anapalli, Saseendran S. & Pinnamaneni, Srinivasa R. & Chastain, Daryl R. & Reddy, Krishna N. & Simmons, Clyde Douglas, 2023. "Eddy covariance quantification of carbon and water dynamics in twin-row vs. single-row planted corn," Agricultural Water Management, Elsevier, vol. 281(C).
  • Handle: RePEc:eee:agiwat:v:281:y:2023:i:c:s0378377423001002
    DOI: 10.1016/j.agwat.2023.108235
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423001002
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108235?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anapalli, Saseendran S. & Pinnamaneni, Srinivasa R. & Reddy, Krishna N. & Sui, Ruixiu & Singh, Gurbir, 2022. "Investigating soybean (Glycine max L.) responses to irrigation on a large-scale farm in the humid climate of the Mississippi Delta region," Agricultural Water Management, Elsevier, vol. 262(C).
    2. Anapalli, Saseendran S. & Fisher, Daniel K. & Reddy, Krishna N. & Wagle, Pradeep & Gowda, Prasanna H. & Sui, Ruixiu, 2018. "Quantifying soybean evapotranspiration using an eddy covariance approach," Agricultural Water Management, Elsevier, vol. 209(C), pages 228-239.
    3. Anapalli, Saseendran S. & Fisher, Daniel K. & Pinnamaneni, Srinivasa Rao & Reddy, Krishna N., 2020. "Quantifying evapotranspiration and crop coefficients for cotton (Gossypium hirsutum L.) using an eddy covariance approach," Agricultural Water Management, Elsevier, vol. 233(C).
    4. Frederik De Roo & Sha Zhang & Sadiq Huq & Matthias Mauder, 2018. "A semi-empirical model of the energy balance closure in the surface layer," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-23, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anapalli, Saseendran S. & Pinnamaneni, Srinivasa R. & Reddy, Krishna N. & Sui, Ruixiu & Singh, Gurbir, 2022. "Investigating soybean (Glycine max L.) responses to irrigation on a large-scale farm in the humid climate of the Mississippi Delta region," Agricultural Water Management, Elsevier, vol. 262(C).
    2. Abou Ali, Asma & Bouchaou, Lhoussaine & Er-Raki, Salah & Hssaissoune, Mohammed & Brouziyne, Youssef & Ezzahar, Jamal & Khabba, Saïd & Chakir, Adnane & Labbaci, Adnane & Chehbouni, Abdelghani, 2023. "Assessment of crop evapotranspiration and deep percolation in a commercial irrigated citrus orchard under semi-arid climate: Combined Eddy-Covariance measurement and soil water balance-based approach," Agricultural Water Management, Elsevier, vol. 275(C).
    3. Machakaire, A.T.B. & Steyn, J.M. & Franke, A.C., 2021. "Assessing evapotranspiration and crop coefficients of potato in a semi-arid climate using Eddy Covariance techniques," Agricultural Water Management, Elsevier, vol. 255(C).
    4. França, Ana Carolina Ferreira & Coelho, Rubens Duarte & da Silva Gundim, Alice & de Oliveira Costa, Jéfferson & Quiloango-Chimarro, Carlos Alberto, 2024. "Effects of different irrigation scheduling methods on physiology, yield, and irrigation water productivity of soybean varieties," Agricultural Water Management, Elsevier, vol. 293(C).
    5. Elfarkh, Jamal & Simonneaux, Vincent & Jarlan, Lionel & Ezzahar, Jamal & Boulet, Gilles & Chakir, Adnane & Er-Raki, Salah, 2022. "Evapotranspiration estimates in a traditional irrigated area in semi-arid Mediterranean. Comparison of four remote sensing-based models," Agricultural Water Management, Elsevier, vol. 270(C).
    6. Granata, Francesco & Di Nunno, Fabio, 2021. "Forecasting evapotranspiration in different climates using ensembles of recurrent neural networks," Agricultural Water Management, Elsevier, vol. 255(C).
    7. Pereira, L.S. & Paredes, P. & Hunsaker, D.J. & López-Urrea, R. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method," Agricultural Water Management, Elsevier, vol. 243(C).
    8. Wang, Xingwang & Huo, Zailin & Shukla, Manoj K. & Wang, Xianghao & Guo, Ping & Xu, Xu & Huang, Guanhua, 2020. "Energy fluxes and evapotranspiration over irrigated maize field in an arid area with shallow groundwater," Agricultural Water Management, Elsevier, vol. 228(C).
    9. Ouaadi, Nadia & Jarlan, Lionel & Khabba, Saïd & Le Page, Michel & Chakir, Adnane & Er-Raki, Salah & Frison, Pierre-Louis, 2023. "Are the C-band backscattering coefficient and interferometric coherence suitable substitutes of NDVI for the monitoring of the FAO-56 crop coefficient?," Agricultural Water Management, Elsevier, vol. 282(C).
    10. French, Andrew N. & Sanchez, Charles A. & Wirth, Troy & Scott, Andrew & Shields, John W. & Bautista, Eduardo & Saber, Mazin N. & Wisniewski, Elzbieta & Gohardoust, Mohammadreza R., 2023. "Remote sensing of evapotranspiration for irrigated crops at Yuma, Arizona, USA," Agricultural Water Management, Elsevier, vol. 290(C).
    11. Anapalli, Saseendran S. & Fisher, Daniel K. & Reddy, Krishna N. & Rajan, Nithya & Pinnamaneni, Srinivasa Rao, 2019. "Modeling evapotranspiration for irrigation water management in a humid climate," Agricultural Water Management, Elsevier, vol. 225(C).
    12. Amanda M. Nelson & Nicolas E. Quintana Ashwell & Christopher D. Delhom & Drew M. Gholson, 2022. "Leveraging Big Data to Preserve the Mississippi River Valley Alluvial Aquifer: A Blueprint for the National Center for Alluvial Aquifer Research," Land, MDPI, vol. 11(11), pages 1-17, October.
    13. Anapalli, Saseendran S. & Fisher, Daniel K. & Pinnamaneni, Srinivasa Rao & Reddy, Krishna N., 2020. "Quantifying evapotranspiration and crop coefficients for cotton (Gossypium hirsutum L.) using an eddy covariance approach," Agricultural Water Management, Elsevier, vol. 233(C).
    14. Xie, Shuhua & Leib, Brian G. & Farhadi-Machekposhti, Mabood & Grant, Timothy James & Adotey, Nutifafa & Butler, David M., 2024. "Soybean yield response to managed depletion irrigation regimes in a Mid-South silt loam soil," Agricultural Water Management, Elsevier, vol. 292(C).
    15. Zitouna-Chebbi, Rim & Jacob, Frédéric & Prévot, Laurent & Voltz, Marc, 2023. "Documenting evapotranspiration and surface energy fluxes over rainfed annual crops within a Mediterranean hilly agrosystem," Agricultural Water Management, Elsevier, vol. 277(C).
    16. Jiang, Shouzheng & Zhao, Lu & Liang, Chuan & Hu, Xiaotao & Yaosheng, Wang & Gong, Daozhi & Zheng, Shunsheng & Huang, Yaowei & He, QingYan & Cui, Ningbo, 2022. "Leaf- and ecosystem-scale water use efficiency and their controlling factors of a kiwifruit orchard in the humid region of Southwest China," Agricultural Water Management, Elsevier, vol. 260(C).
    17. Granata, Francesco, 2019. "Evapotranspiration evaluation models based on machine learning algorithms—A comparative study," Agricultural Water Management, Elsevier, vol. 217(C), pages 303-315.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:281:y:2023:i:c:s0378377423001002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.