IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v274y2022ics0378377422005224.html
   My bibliography  Save this article

A stand-alone remote sensing approach based on the use of the optical trapezoid model for detecting the irrigated areas

Author

Listed:
  • Longo-Minnolo, Giuseppe
  • Consoli, Simona
  • Vanella, Daniela
  • Ramírez-Cuesta, Juan Miguel
  • Greimeister-Pfeil, Isabella
  • Neuwirth, Martin
  • Vuolo, Francesco

Abstract

Under the current water scarcity scenario, the promotion of water saving strategies is essential for improving the sustainability of the irrigated agriculture. In particular, high resolution irrigated area maps are required for better understanding water uses and supporting water management authorities. The main purpose of this study was to provide a stand-alone remote sensing (RS) methodology for mapping irrigated areas. Specifically, an unsupervised classification approach on Normalized Difference Vegetation Index (NDVI) data was coupled with the OPtical TRApezoid Model (OPTRAM) for detecting actual irrigated areas without the use of any reference data. The proposed methodology was firstly applied and validated at the Marchfeld Cropland region (Austria) during the irrigation season 2021, showing a good agreement with an overall accuracy of 70%. Secondly, it was applied at the irrigation district Quota 102,50 (Italy) for the irrigation seasons 2019–2020. The results of the latter were instead compared with the data declared by the Reclamation Consortium, finding an overestimation of irrigated areas of 21%. In conclusion, this study suggests an easy-to-use approach, eventually independent of reference data such as agricultural statistical surveys or records and replicable under different agricultural settings in continental or Mediterranean climates to support stakeholders for regular estimation of irrigated areas in different growing years or detecting eventual unauthorized water uses. However, some uncertainties should be considered, needing further analyses for improving the accuracy of the proposed approach.

Suggested Citation

  • Longo-Minnolo, Giuseppe & Consoli, Simona & Vanella, Daniela & Ramírez-Cuesta, Juan Miguel & Greimeister-Pfeil, Isabella & Neuwirth, Martin & Vuolo, Francesco, 2022. "A stand-alone remote sensing approach based on the use of the optical trapezoid model for detecting the irrigated areas," Agricultural Water Management, Elsevier, vol. 274(C).
  • Handle: RePEc:eee:agiwat:v:274:y:2022:i:c:s0378377422005224
    DOI: 10.1016/j.agwat.2022.107975
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377422005224
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.107975?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Babak Ghassemi & Markus Immitzer & Clement Atzberger & Francesco Vuolo, 2022. "Evaluation of Accuracy Enhancement in European-Wide Crop Type Mapping by Combining Optical and Microwave Time Series," Land, MDPI, vol. 11(9), pages 1-15, August.
    2. Mutlu Ozdogan & Curtis Woodcock & Guido Salvucci & Hüseyin Demir, 2006. "Changes in Summer Irrigated Crop Area and Water Use in Southeastern Turkey from 1993 to 2002: Implications for Current and Future Water Resources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(3), pages 467-488, June.
    3. Thompson, R.B. & Gallardo, M. & Valdez, L.C. & Fernandez, M.D., 2007. "Using plant water status to define threshold values for irrigation management of vegetable crops using soil moisture sensors," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 147-158, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nolz, R. & Cepuder, P. & Balas, J. & Loiskandl, W., 2016. "Soil water monitoring in a vineyard and assessment of unsaturated hydraulic parameters as thresholds for irrigation management," Agricultural Water Management, Elsevier, vol. 164(P2), pages 235-242.
    2. Pedro Garcia-Caparros & Juana Isabel Contreras & Rafael Baeza & Maria Luz Segura & Maria Teresa Lao, 2017. "Integral Management of Irrigation Water in Intensive Horticultural Systems of Almería," Sustainability, MDPI, vol. 9(12), pages 1-21, December.
    3. N. Maier & J. Dietrich, 2016. "Using SWAT for Strategic Planning of Basin Scale Irrigation Control Policies: a Case Study from a Humid Region in Northern Germany," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 3285-3298, July.
    4. P. Gupta & S. Dutta & S. Panigrahy, 2010. "Mapping of Conjunctive Water Use Productivity Pattern in an Irrigation Command Using Temporal IRS WiFS Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(1), pages 157-171, January.
    5. Migliaccio, Kati W. & Schaffer, Bruce & Crane, Jonathan H. & Davies, Frederick S., 2010. "Plant response to evapotranspiration and soil water sensor irrigation scheduling methods for papaya production in south Florida," Agricultural Water Management, Elsevier, vol. 97(10), pages 1452-1460, October.
    6. Shumin Han & Qiuli Hu & Yonghui Yang & Jiusheng Wang & Ping Wang & Quan Wang, 2015. "Characteristics and Driving Factors of Drainage Water in Irrigation Districts in Arid Areas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5323-5337, November.
    7. Müller, T. & Ranquet Bouleau, C. & Perona, P., 2016. "Optimizing drip irrigation for eggplant crops in semi-arid zones using evolving thresholds," Agricultural Water Management, Elsevier, vol. 177(C), pages 54-65.
    8. Vera-Repullo, J.A. & Ruiz-Peñalver, L. & Jiménez-Buendía, M. & Rosillo, J.J. & Molina-Martínez, J.M., 2015. "Software for the automatic control of irrigation using weighing-drainage lysimeters," Agricultural Water Management, Elsevier, vol. 151(C), pages 4-12.
    9. Pascual-Seva, Núria & San Bautista, Alberto & López-Galarza, Salvador & Maroto, José Vicente & Pascual, Bernardo, 2018. "Influence of different drip irrigation strategies on irrigation water use efficiency on chufa (Cyperus esculentus L. var. sativus Boeck.) crop," Agricultural Water Management, Elsevier, vol. 208(C), pages 406-413.
    10. Dean C. J. Rice & Rupp Carriveau & David S. -K. Ting & Mo’tamad H. Bata, 2017. "Evaluation of Crop to Crop Water Demand Forecasting: Tomatoes and Bell Peppers Grown in a Commercial Greenhouse," Agriculture, MDPI, vol. 7(12), pages 1-14, December.
    11. Liang, Xi & Liakos, Vasilis & Wendroth, Ole & Vellidis, George, 2016. "Scheduling irrigation using an approach based on the van Genuchten model," Agricultural Water Management, Elsevier, vol. 176(C), pages 170-179.
    12. Ahmed A. Abdelmoneim & Roula Khadra & Angela Elkamouh & Bilal Derardja & Giovanna Dragonetti, 2023. "Towards Affordable Precision Irrigation: An Experimental Comparison of Weather-Based and Soil Water Potential-Based Irrigation Using Low-Cost IoT-Tensiometers on Drip Irrigated Lettuce," Sustainability, MDPI, vol. 16(1), pages 1-15, December.
    13. Zhang, Chao & Dong, Jinwei & Zuo, Lijun & Ge, Quansheng, 2022. "Tracking spatiotemporal dynamics of irrigated croplands in China from 2000 to 2019 through the synergy of remote sensing, statistics, and historical irrigation datasets," Agricultural Water Management, Elsevier, vol. 263(C).
    14. Satriani, A. & Loperte, A. & Soldovieri, F., 2015. "Integrated geophysical techniques for sustainable management of water resource. A case study of local dry bean versus commercial common bean cultivars," Agricultural Water Management, Elsevier, vol. 162(C), pages 57-66.
    15. Lazar Segal & Leonid Burstein, 2010. "Retardation of Water Evaporation by a Protective Float," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(1), pages 129-137, January.
    16. Thompson, R.B. & Gallardo, M. & Valdez, L.C. & Fernandez, M.D., 2007. "Determination of lower limits for irrigation management using in situ assessments of apparent crop water uptake made with volumetric soil water content sensors," Agricultural Water Management, Elsevier, vol. 92(1-2), pages 13-28, August.
    17. Shih-Lun Fang & Ting-Jung Chang & Yuan-Kai Tu & Han-Wei Chen & Min-Hwi Yao & Bo-Jein Kuo, 2022. "Plant-Response-Based Control Strategy for Irrigation and Environmental Controls for Greenhouse Tomato Seedling Cultivation," Agriculture, MDPI, vol. 12(5), pages 1-17, April.
    18. Santiago Castaño & David Sanz & Juan Gómez-Alday, 2010. "Methodology for Quantifying Groundwater Abstractions for Agriculture via Remote Sensing and GIS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(4), pages 795-814, March.
    19. Li Yang & Haijun Liu & Shabtai Cohen & Zhuangzhuang Gao, 2022. "Microclimate and Plant Transpiration of Tomato ( Solanum lycopersicum L.) in a Sunken Solar Greenhouse in North China," Agriculture, MDPI, vol. 12(2), pages 1-21, February.
    20. Beyá-Marshall, Víctor & Arcos, Emilia & Seguel, Óscar & Galleguillos, Mauricio & Kremer, Cristián, 2022. "Optimal irrigation management for avocado (cv. 'Hass') trees by monitoring soil water content and plant water status," Agricultural Water Management, Elsevier, vol. 271(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:274:y:2022:i:c:s0378377422005224. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.