IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v266y2022ics0378377422001123.html
   My bibliography  Save this article

The economic value of flood risk regulation by agroecosystems at semiarid areas

Author

Listed:
  • Martínez-García, Víctor
  • Martínez-Paz, José M.
  • Alcon, Francisco

Abstract

Agroecosystems are anthropized ecosystems that provide food and other benefits to society known as ecosystem services (ES). Among these services is the Ecosystem Service for Flood Regulation (ESFR). This regulation service has been scarcely studied in the scientific literature, which has mainly focused on factors such as land use patterns and intermediate indicators. This implies that key physical aspects that condition the development of floods and their impact on society have been ignored. The aim of this work is to develop a methodological proposal for accurate economic valuation of the ESFR provided by agroecosystems. To this end, the avoided damage method is used, carrying out hydrological and two-dimensional hydraulic modeling combined with cadastral cartography and a depth-damage function. The model thus constructed allows the quantification of the damage reduction associated with different levels of agroecosystem ESFR provision. The urban settlement composed mainly of the municipality of Los Alcázares, and also the Bahia Bella housing estate, from the municipality of Cartagena (Murcia, south-eastern Spain), is used as a case study, as it is located downstream of a predominantly agricultural area recurrently affected by floods. The results show that the value of the ESFR provided by the service-maximizing agroecosystem in the area, citrus crops, is 22.51 € ha-1 year-1 in the case study area, which is comparable with that of natural ecosystems. Furthermore, relationships were established between intermediate indicators and economic losses which, in addition to facilitating the valuation process, show a limit in the flood regulation provisioning of agroecosystems in the face of the most extreme events. This work shows the magnitude of the ESFR that can be provided by agriculture and enables its valuation in areas with similar characteristics. The information obtained can be incorporated into the decision-making process of land and risk management organizations, enabling them to rationalize agricultural spatial planning.

Suggested Citation

  • Martínez-García, Víctor & Martínez-Paz, José M. & Alcon, Francisco, 2022. "The economic value of flood risk regulation by agroecosystems at semiarid areas," Agricultural Water Management, Elsevier, vol. 266(C).
  • Handle: RePEc:eee:agiwat:v:266:y:2022:i:c:s0378377422001123
    DOI: 10.1016/j.agwat.2022.107565
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377422001123
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.107565?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Johnston, Robert J. & Russell, Marc, 2011. "An operational structure for clarity in ecosystem service values," Ecological Economics, Elsevier, vol. 70(12), pages 2243-2249.
    2. Mach, Megan E. & Martone, Rebecca G. & Chan, Kai M.A., 2015. "Human impacts and ecosystem services: Insufficient research for trade-off evaluation," Ecosystem Services, Elsevier, vol. 16(C), pages 112-120.
    3. de Groot, Rudolf S. & Wilson, Matthew A. & Boumans, Roelof M. J., 2002. "A typology for the classification, description and valuation of ecosystem functions, goods and services," Ecological Economics, Elsevier, vol. 41(3), pages 393-408, June.
    4. Mitsch, William J. & Gosselink, James G., 2000. "The value of wetlands: importance of scale and landscape setting," Ecological Economics, Elsevier, vol. 35(1), pages 25-33, October.
    5. Fan, Zhiwei & An, Tongxin & Wu, Kaixian & Zhou, Feng & Zi, Shuhui & Yang, Yuanman & Xue, Guofeng & Wu, Bozhi, 2016. "Effects of intercropping of maize and potato on sloping land on the water balance and surface runoff," Agricultural Water Management, Elsevier, vol. 166(C), pages 9-16.
    6. Brenden Jongman, 2018. "Effective adaptation to rising flood risk," Nature Communications, Nature, vol. 9(1), pages 1-3, December.
    7. Zabala, José A. & Martínez-Paz, José M. & Alcon, Francisco, 2021. "Integrated valuation of semiarid Mediterranean agroecosystem services and disservices," Ecological Economics, Elsevier, vol. 184(C).
    8. Perni, Ángel & Barreiro-Hurlé, Jesús & Martínez-Paz, José Miguel, 2020. "When policy implementation failures affect public preferences for environmental goods: Implications for economic analysis in the European water policy," Ecological Economics, Elsevier, vol. 169(C).
    9. Heidi Kreibich & Philip Bubeck & Mathijs Vliet & Hans Moel, 2015. "A review of damage-reducing measures to manage fluvial flood risks in a changing climate," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(6), pages 967-989, August.
    10. Kousky, Carolyn & Walls, Margaret, 2014. "Floodplain conservation as a flood mitigation strategy: Examining costs and benefits," Ecological Economics, Elsevier, vol. 104(C), pages 119-128.
    11. Hessel C. Winsemius & Jeroen C. J. H. Aerts & Ludovicus P. H. van Beek & Marc F. P. Bierkens & Arno Bouwman & Brenden Jongman & Jaap C. J. Kwadijk & Willem Ligtvoet & Paul L. Lucas & Detlef P. van Vuu, 2016. "Global drivers of future river flood risk," Nature Climate Change, Nature, vol. 6(4), pages 381-385, April.
    12. Azhar Abbas & T. Amjath-Babu & Harald Kächele & Klaus Müller, 2015. "Non-structural flood risk mitigation under developing country conditions: an analysis on the determinants of willingness to pay for flood insurance in rural Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2119-2135, February.
    13. Barth, Nina-Christin & Döll, Petra, 2016. "Assessing the ecosystem service flood protection of a riparian forest by applying a cascade approach," Ecosystem Services, Elsevier, vol. 21(PA), pages 39-52.
    14. Hans Visser & Arthur Petersen & Willem Ligtvoet, 2014. "On the relation between weather-related disaster impacts, vulnerability and climate change," Climatic Change, Springer, vol. 125(3), pages 461-477, August.
    15. Dominik Paprotny & Antonia Sebastian & Oswaldo Morales-Nápoles & Sebastiaan N. Jonkman, 2018. "Trends in flood losses in Europe over the past 150 years," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    16. Nazmul Huq & Alexander Stubbings, 2015. "How is the Role of Ecosystem Services Considered in Local Level Flood Management Policies: Case Study in Cumbria, England," Journal of Environmental Assessment Policy and Management (JEAPM), World Scientific Publishing Co. Pte. Ltd., vol. 17(04), pages 1-29, December.
    17. Watson, Keri B. & Ricketts, Taylor & Galford, Gillian & Polasky, Stephen & O'Niel-Dunne, Jarlath, 2016. "Quantifying flood mitigation services: The economic value of Otter Creek wetlands and floodplains to Middlebury, VT," Ecological Economics, Elsevier, vol. 130(C), pages 16-24.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jian Tian & Suiping Zeng & Jian Zeng & Feiyang Jiang, 2022. "Assessment of Supply and Demand of Regional Flood Regulation Ecosystem Services and Zoning Management in Response to Flood Disasters: A Case Study of Fujian Delta," IJERPH, MDPI, vol. 20(1), pages 1-23, December.
    2. Ramón Espinel & Gricelda Herrera-Franco & José Luis Rivadeneira García & Paulo Escandón-Panchana, 2024. "Artificial Intelligence in Agricultural Mapping: A Review," Agriculture, MDPI, vol. 14(7), pages 1-36, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ioannis Kougkoulos & Myriam Merad & Simon J. Cook & Ioannis Andredakis, 2021. "Floods in Provence-Alpes-Côte d'Azur and lessons for French flood risk governance," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(2), pages 1959-1980, November.
    2. Mikša, Katažyna & Kalinauskas, Marius & Inácio, Miguel & Pereira, Paulo, 2021. "Implementation of the European Union Floods Directive—Requirements and national transposition and practical application: Lithuanian case-study," Land Use Policy, Elsevier, vol. 100(C).
    3. Scemama, Pierre & Levrel, Harold, 2019. "Influence of the Organization of Actors in the Ecological Outcomes of Investment in Restoration of Biodiversity," Ecological Economics, Elsevier, vol. 157(C), pages 71-79.
    4. Laura Devitt & Jeffrey Neal & Gemma Coxon & James Savage & Thorsten Wagener, 2023. "Flood hazard potential reveals global floodplain settlement patterns," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Matthew Oliver Ralp Dimal & Victor Jetten, 2020. "Analyzing preference heterogeneity for soil amenity improvements using discrete choice experiment," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(2), pages 1323-1351, February.
    6. Cordier, Mateo & Pérez Agúndez, José A. & Hecq, Walter & Hamaide, Bertrand, 2014. "A guiding framework for ecosystem services monetization in ecological–economic modeling," Ecosystem Services, Elsevier, vol. 8(C), pages 86-96.
    7. Posthumus, H. & Rouquette, J.R. & Morris, J. & Gowing, D.J.G. & Hess, T.M., 2010. "A framework for the assessment of ecosystem goods and services; a case study on lowland floodplains in England," Ecological Economics, Elsevier, vol. 69(7), pages 1510-1523, May.
    8. Natacha LASKOWSKI, 2013. "Optimal allocation of wetlands: Study on conflict between agriculture and fishery," Cahiers du GREThA (2007-2019) 2013-07, Groupe de Recherche en Economie Théorique et Appliquée (GREThA).
    9. Namakando, Namakando, 2020. "Stakeholder perceptions of raw water quality and its management in Fetakgomo and Maruleng municipalities of Limpopo Province," Research Theses 334769, Collaborative Masters Program in Agricultural and Applied Economics.
    10. Aryal, Kishor & Ojha, Bhuwan Raj & Maraseni, Tek, 2021. "Perceived importance and economic valuation of ecosystem services in Ghodaghodi wetland of Nepal," Land Use Policy, Elsevier, vol. 106(C).
    11. D.C & Nwankwoala & H. O & Okujagu, 2021. "A Review Of Wetlands And Coastal Resources Of The Niger Delta: Potentials, Challenges And Prospects," Environment & Ecosystem Science (EES), Zibeline International Publishing, vol. 5(1), pages 37-46, March.
    12. Sonter, Laura J. & Johnson, Justin A. & Nicholson, Charles C. & Richardson, Leif L. & Watson, Keri B. & Ricketts, Taylor H., 2017. "Multi-site interactions: Understanding the offsite impacts of land use change on the use and supply of ecosystem services," Ecosystem Services, Elsevier, vol. 23(C), pages 158-164.
    13. Nahlik, Amanda M. & Kentula, Mary E. & Fennessy, M. Siobhan & Landers, Dixon H., 2012. "Where is the consensus? A proposed foundation for moving ecosystem service concepts into practice," Ecological Economics, Elsevier, vol. 77(C), pages 27-35.
    14. Comello, Stephen D. & Maltais-Landry, Gabriel & Schwegler, Benedict R. & Lepech, Michael D., 2014. "Firm-level ecosystem service valuation using mechanistic biogeochemical modeling and functional substitutability," Ecological Economics, Elsevier, vol. 100(C), pages 63-73.
    15. repec:ags:aaea22:335462 is not listed on IDEAS
    16. Dale, Virginia H. & Polasky, Stephen, 2007. "Measures of the effects of agricultural practices on ecosystem services," Ecological Economics, Elsevier, vol. 64(2), pages 286-296, December.
    17. Uchida, Emi & Swallow, Stephen K. & Gold, Arthur J. & Opaluch, James & Kafle, Achyut & Merrill, Nathaniel H. & Michaud, Clayton & Gill, Carrie Anne, 2018. "Integrating Watershed Hydrology and Economics to Establish a Local Market for Water Quality Improvement: A Field Experiment," Ecological Economics, Elsevier, vol. 146(C), pages 17-25.
    18. Natho, Stephanie & Hudson, Paul, 2024. "Accounting for the value of ecosystem services of floodplains in Germany – National studies matter," Ecosystem Services, Elsevier, vol. 67(C).
    19. Danley, Brian & Widmark, Camilla, 2016. "Evaluating conceptual definitions of ecosystem services and their implications," Ecological Economics, Elsevier, vol. 126(C), pages 132-138.
    20. Alexa Tanner & Joseph Árvai, 2018. "Perceptions of Risk and Vulnerability Following Exposure to a Major Natural Disaster: The Calgary Flood of 2013," Risk Analysis, John Wiley & Sons, vol. 38(3), pages 548-561, March.
    21. Ishfaq Ahmad Sheergojri & Irfan Rashid & Ishfaq ul Rehman, 2024. "Systematic review of wetland ecosystem services valuation in India: assessing economic approaches, knowledge gaps, and management implications," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 14(1), pages 167-179, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:266:y:2022:i:c:s0378377422001123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.